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8 

ON THE LUMINOUS EFFICIENCY OF METEORS 

by 
1 Franco Verniani 

Summary.--The r a t i o  of the photographic luminous eff ic iency T 

t he  square of the  densi ty  p, of about 400 Super-Schmidt meteors, 
p rec ise ly  reduced by Jacchia, has been computed d i r e c t l y  from t h e  
observational data. Fragmentation has been taken i n t o  accoud  ir? 
the computation. 

t o  P 

A f t e r  c r i t i c a l l y  reviewing previous papers on the subject,  t h e  
author discusses his assumptions and the  procedure he employed. 
The theory allows the  evaluation of t he  quant i ty  T J ~ :  . It is 
possible  t o  determine T only i n  the  few cases i n  which the  meteors 
show posi t ive evidence of being of as te ro ida l  or igin.  The correct  
dependence T on v is  found, a f t e r  allowing f o r  t he  d i f f e ren t  mean 
dens i t i e s  of meteors i n  short-period and long-period orb i t s ,  s ince 
t h e  meteor density is independent of t h e  veloci ty  v. 
shows t h a t  a power l a w  'p= T $1 best represents T as a function 
of v. may ac tua l ly  be extremely corn- 

P 
plicated,  since most of t h e  meteor l i g h t  comes from emission l i n e s  
whose in t ens i ty  may not vary uniformly or even smoothly with velocity.  
The exponent n turns  out t o  be 1.0 f 0.15 f o r  both f a i n t  and 
br ight  meteors. The best  small-camera meteors have been used f o r  
comparison. The value of T comes out t o  be about 1 X 

OP 
zero mag g-l eme3 s4, which agrees very w e l l  w i t h  t he  value inferred 
by McCrosky and Soberman from t he  r e su l t s  of a r t i f i c i a l  meteors. 
masses computed a t  Harvard on the  basis  of Opik's o r ig ina l  theory 
therefore  appear t o  be about 6 times smaller than those obtained using 
the  value of the  luminous efficiency derived i n  the  present paper. 

P 

P 

The author 

OP P 
The de ta i led  behaviour of T 

The 

1 
On leave: Centro Nazionale pe r  la  Fis ica  d e l l '  Atmoefera d e l  C.N.R., 

This work w a s  supported i n  par t  by grant  N s G  87-60 from the National 
Roma, I talia.  
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-I A t  a veloci ty  of 40 kms 
expressed i n  physical un i t s  as t h e  r a t i o  OF t h e  energy radiated 
i n  the  blue spec t r a l  range t o  the  k ine t i c  energy of t he  meteoroid, 

i s  about ~ A O - ~ .  A t  t he  same ve loc i ty  t h e  mass of a zero v i sua l  
magnitude meteoroid i s  roughly 0.8 g. 
of an ablated meteor atom can be estimated from T and fram some 

re su l t s  of Davis and Hall (1963) on combined radio and photographic 
observations i n  meteors; a t  v = 32 kms- l  B turns out t o  be 0.01. 

t h e  photographic luminous eff ic iency,  

The ionizing probabi l i ty  p 
P 

The ana lys i s  shows no dependence of T on mass o r  brightness 

and fails t o  de t ec t  any appreciable change of T i n  t he  course of 
a meteor t r a j ec to ry .  Moreover, t h e  r e s u l t s  show t h a t  T is  inde- 
pendent of atmospheric density. Luminous e f f ic iency  does seem t o  
depend on fragmentation i n  the  sense t h a t  nonfragmenting meteors 
appear t o  produce l i g h t  more e f f i c i e n t l y  than those t h a t  crumble 
eas i ly .  The r e su l t s  obtained f o r  small-camera meteors a re  i n  
general agreement with those obtained f o r  Super-Schmidt meteors, 
but it appears t h a t  f i r e b a l l s  must have a dens i ty  about twice t h a t  
of f a i n t e r  meteors. The mean r e l a t i v e  dens i ty  of meteors i n  t h e  
main recurrent showers has been a l s o  determined. Each shower appears 
t o  have i ts  pecul ia r  density. Jacchia obtained a similar r e s u l t  
from an analysis  of points  near t h e  beginning of meteor t r a j e c t o r i e s .  

P 

P 
P 

Introduction 

By far the most precise  astronomical da t a  f o r  meteor o r b i t s  have 
been obtained by use of photographic techniques (Jacchia  and Whipple, 
1961). Photographic da ta  a l s o  make it possible t o  evaluate  physical  
quant i t ies ,  including those t h a t  cannot be determined by other  means of 
invest igat ion,  such as, f o r  instance, Jacchia’s  fragmentation index. 
Such basic  quant i t ies  as t h e  masses of meteoroids are, however, s t i l l  
very uncertain, although the  photographic technique, by providing a l i g h t  
curve, i s  much more he lpfu l  than other  means of invest igat ion.  The la rge  
uncertainty r e su l t s  from the  lack of knowledge of t h e  luminous e f f ic iency  
of meteors. The purpose of t h i s  work i s  t o  ex t r ac t ,  from t h e  Harvard 
photographic meteors, d i r e c t  information concerning t h i s  parameter. 

? 
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Since the  luminous in t ens i ty  I of a meteor is generally accepted t o  
be proportional t o  the  k ine t i c  energy of the ablated atoms," t h e  
luminosity equation is  usually wri t ten i n  form 

1 -2 dm I = - ~ r v  - a t  ' 

m and v being the  mass and velocity of t he  body; T, the  luminous e f f ic iency;  

and --the rate of t he  mass l o s s  i n  atomic (or molecular) form. 
cap radiat ion w i l l  be neglected because the  meteors t h a t  we will r e f e r  to, 
have teen  photographed i n  blue emiilslon, an6 there  i s  experizental  evidence 
t h a t  such radiat ion i s  important only i n  the  red and t h e  inf ra red  regions 
(Millman and Cook, 1959). 

dm 
a t  The gas- 

dm The proport ional i ty  between I and E , i .e.,  between the  luminous 
in t ens i ty  and the rate of ab la t ion  of f r ee  atoms, i s  qui te  c lear .  I n  

h 

contrast ,  the  proport ional i ty  between I and vc seems much harder t o  under- 
stand. It i s  ac tua l ly  easy t o  envisage a very i n t r i c a t e  dependence of I, 
i.e.,  of T, on the  veloci ty  v. Let us cons5der Che spectrum of a meteor 
with a given velocity.  If we progressively increase the  velocity,  t h e  
in t ens i ty  of t h e  s ing le  l i n e s  w i l l  change; some low-excitation l i n e s  w i l l  
fade out; new l i n e s  w i l l  appear; and ce r t a in ly  the  t o t a l  emitted l i g h t  
will not be a simple function o f  the velocity.  It is  evident, moreover, 
t h a t  t he  luminous in t ens i ty  depends on the  spec t r a l  range t h a t  one 
considers. I n  the  following we w i l l  r e f e r  t o  a v isua l  luminous in t ens i ty  
Iv and t o  a photographic luminous in tens i ty  I 

of t h e  blue emulsion generally used i n  H a r v a r d  photographic s tudies .  
Accordingly, we w i l l  have two d i f fe ren t  luminous e f f i c i enc ie s  T P defined by 

defined by the  s e n s i t i v i t y  
P' 

and T ~ ,  

Whe photographed spectra of meteors confirm t h a t  the k ine t i c  energy l o s t  
by decelerat ion of t he  body does not contribute t o  the  l i g h t .  

-3- 



and 

If we assume, as i s  generally accepted, that t h e  dependence of t he  
luminous eff ic iency on the veloci ty  can be expressed by a power l a w  of 
the  form T - u", and i f  we introduce t h e  color  index of t h e  meteors C, 
which i s  defined as the  difference 5-% between the  photographic and t h e  
v i sua l  magnitudes we get 

T 

c = - 2.5 log b =  - 2.5 log Op ' - 2.5 (%-nv) log  v . ( 3 )  
1, Tov 

The symbols are self -explanatory. 

Jacchia (1957a) found that C is  independent of t he  meteor velocity;  
t h i s  result has been confirmed by the  ana lys i s  of t h e  complete set  of data ,  
p rec ise ly  reduced by Jacchia, concerning SuperSchmidt material (Jacchia, 
Verniani and Briggs, unpublished). W e  therefore  have observational 
evidence that the exponents 3 and n a r e  equal--a r e su l t  t h a t  i s  far from 
obvious. This being so, i n  t he  following n w i l l  refer both t o  % and 
Jacchia 's  resu l t s  show a l s o  t h a t  C decreases i n  absolute value with the 
brightness.  
and consequently of the  mass of the  meteors. 
a flmction of M allows us t o  determine T as a f'unction of T . For 
meteors br ighter  than M = -2, we can sa fe ly  assume C = -1.91 then 

T~ = 0.17 -rP . 
can be approximately described by the  l i n e a r  equation 

V . 
Hence t h e  r a t i o  T ~ ~ / T ~ ~  must be a function of the br ightness  

np 

Knowing t h e  values of C as 

P V P 
P 

For meteors with M between -2 and +l .5  Jacchia ' s  results 
P 

c = 0.28 M - 1.34 , 
P 

so that 
7 

log 2 = 0.11 M - 0.54 . 
TP P 

(4) 

( 5 )  

. 
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Since a t  present only 6pik (1933, 1955) has studied theo re t i ca l ly  
the  luminous eff ic iency i n  the  visual range, h i s  work has necessar i ly  
been t h e  only bas is  f o r  t he  somputation of meteoric masses. I n  f ac t ,  
Whipple (1938) approximated Opik's resu l t s  f o r  br ight  meteors by assuming 

i n  the spectrum range between 
4500 and 5700 A.  
value and w i t h  the l i n e a r  dependence of T on v . Both T~~ and t h e  exponent 
n are very uncertain. 
"a semi-empirical, semi-theoretical approach on the  bas i s  of a combination 
of c l a s s i c a l  and quantum-mechanical principle," but  Thomas and Whipple (1951) 
have considered it O P I Y  "a roueh approximation." 
here t o  summarize the  work of dpik; the  number of assumptions he introdaced 
t o  ge t  h i s  results is  such t h a t  even a rough estFmate of t h e  e r ro r s  involved 
i n  the f i n a l  results is  impossible. 
mental results can afford such an estimate. I n  the  revis ion of his own 
work b i k  (1955) confirmed n = 1 for  br ight  meteors and reduced t h e  value 
T The uncertainty involved 

-1 
v w i t h  T~~ = 8.5 X 10-l' scm - 

T v  - Tov 
A l l  Harvard meteoric masses have been computed with this  

6pik (1958) writes t h a t  his bas ic  work of 1933 i s  

No attempt w i l l  be made 

Only a comparison with d i r e c t  experi- 

t o  about 60 percent of t he  preceding value. 
OY 

may, however, be as large as two orders of magnitude (Whipple and in Tov 
Hawkins, 1959). 
t r a i n s  led t o  a value of T~~ about 220 f 150 t i m e s  less than b i k ' s  o r ig ina l  
value (Cook, 1955). 
McCrosky (1963) and McCrosky and Soberman (1962) on a r t i f i c i a l  meteors 
suggests an intermediate value between the  two extremes, as does a work on 
a few c l ea r ly  recognized as te ro ida l  meteors (Cook, Jacchia and McCrogky, 
1963). A theoreticaL study on meteor densi ty  (Verniani, 1962) leads t o  
the conclusion t h a t  Opik's value cannot be wrong by an order of magnitude. 
W e  w i l l  l a te r  examine more closely the results obtained with a r t i f i c i a l  
pellets and with the as te ro ida l  meteors i n  searching f o r  the range i n  
which T 

The determination of masses through the  motion of meteoric 

Conversely, the extrapolat ion of recent r e su l t s  of 

should l i e  and f o r  i t s  most  probable value. 
OP 

Current ideas, summarized by McKinley (1961), on the  dependence of 
T on veloci ty  are t h a t  n = 1 applies only t o  t h e  b r igh te r  photographic 
meteors; f o r  f a i n t e r  meteors T should vary more slowly than the  first 
power of v, perhaps even as a negative power of v f o r  f a i n t e r  dustbal ls .  
Although Millman and McKinley (1963) a t t r i b u t e  t o  Whipple t h e  conclusion 
t h a t  f o r  f a i n t  meteors T i s  almost independent of velocity,  the  o r ig ina l  
source i s  6pik (1955), who obtained theo re t i ca l ly  for dus tba l l s  n = - 0.88 
and then assumed the  round r e l a t i o n  T~ = - 2000 scm-l, and Jacchia (1957b), 
who f o r  f a i n t  Super-Schmidt meteors found T independent of  velocity.  This 
r e s u l t  was obtained from t he  f i t t i n g  of the  atmospheric p r o f i l e  computed 
by means of meteor decelerations t o  t h e  standard atmosphere of t h a t  t i m e  
(ARDC 1956), which had a slope d i f fe ren t  enough from the  present U.S. 
Standard (1962) t o  produce a nonnegligible e r r o r  i n  n. A re-analysis of 

v 
I 
I 
I 
I 

I 
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t h e  Super-Schmidt meteors, using the  new standard atmosphere, shows t h a t  
n cannot be far from 1 (Jacchia, Verniani, and Briggs, unpublished). 
Unfortunately, the  r e su l t s  a r e  only s l i g h t l y  sens i t i ve  t o  a var ia t ion  of 
n. The resu l t s  of the present work show c l ea r ly  t h a t  T i s  independent 

of the  brightness of meteors. A dependence of the  luminous e f f ic iency  on 
the  magnitude or on the  mass should not be easy t o  j u s t i f y  theore t ica l ly ,  
although it seems t h a t  the spectrum of meteors changes with the  brightness 
i n  such a way t h a t  the emission i n  the  red appears t o  become important f o r  
f a i n t e r  meteors. 
t o  explain the r e su l t s  on the color index t h a t  he obtained by using 
panchromatic emulsions, which a t t a i n  maximum s e n s i t i v i t y  f o r  a wavelength 
equal t o  6700 A. Davis' (1961) photoelectr ic  measurements confirmed t h i s  
suggestion. 
Kallmann (1955), who concluded t h a t  the  luminous e f f ic iency  should be pro- 
p o r t i o n a l t o  a power of the durat ion of t he  individual  meteors. Obviously 
such an hypothesis has absolutely no physical meaning. 

P 

Ceplecha (1959) has suggested t h i s  spectrum change 

A var ia t ion  of T with brightness w a s  a l s o  predicted by 

Recently Ananthakrishnan (1960, 1961), t ry ing  t o  remove the  d i s  - 
agreement between the  theo re t i ca l  beginning and end heights and the  
measured heights of the photographic meteors reduced by Hawkins and 
Southworth (1958), introduced the  hypothesis t h a t  T 

of an individual meteor i n  proportion t o  t h e  atmospheric densi ty  p . 
Evidently t h i s  assumption has no physical bas i s  e i ther .  
must be proportional t o  pa because of the  proport ional i ty  between pa and 
t h e  rate a t  which atoms leave the  body and a r e  responsible f o r  t he  emission 
of l i g h t .  

proportional t o  p 2  and t h i s  i s  absurd; of course the  observational resul ts  
confirm t h a t  such an hypothesis i s  wrong. Incidental ly ,  t h e  above-mentioned 
discrepancy between the  theo re t i ca l  and t h e  observed heights i s  without any 
doubt an e f fec t  of fragmentation, as Hawkins and Southworth cor rec t ly  
stated on the bas i s  of Jacchia 's  (1955) fundamental f inding. That t he  
experimental heights of the Super-Schmidt meteors seem t o  f i t  t he  curve 
computed with T - $ a v  b e t t e r  than the  t h e o r e t i c a l  curve based on T - v i s  

so l e ly  the  resu l t  of the upward sh i f t i ng  of the  meteoric heights produced 
by the  fragmentation. This has the  same e f f e c t  as increasing luminous 
e f f ic iency  with p would. Moreover, when Ananthakrishnan shows t h a t  t h e  
less-fragmenting $art of the Hawkins-Southworth meteors a r e  not so far 
removed from the theo re t i ca l  curve as the  Draconids of Jacchia, Kopal and 
Millman (1950), he f inds only the  very well-known f a c t  t h a t  the  fragmentation 
of t he  members of t he  Draconid shower i s  extreme. The fragmentation index 
x of Draconids i s  near t o  2, while the  average x f o r  a l l  t h e  Super-Schmidt 
meteors i s  0.25 and t h a t  of t he  group selected i n  h i s  paper i s  ce r t a in ly  
even smaller. 

var ies  along the  t r a i l  
P 

a 
The emitted l i g h t  

Ananthakrishnan's hypothesis means t h a t  t he  emitted l i g h t  i s  

a y  

. 
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. 
I 

Ceplecha (1958) and Ceplecha and Padevzt (1961) have attempted t o  
evaluate n by using H a r v a r d  data on small-camera meteors (Jacchia, 1952) 
and on Super-Schmidt neteors (Hawkins and Southworth, 1958). 
results are n = -0.33 f 0.61 f o r  small-camera meteors and n = -2.8 f 0.2 
f o r  Super-Schmidt meteors. These values of n appear unacceptable. There 
a re  severa l  reasons f o r  this :  

Their 

(1) Ceplecha used the  theore t ica l  re la t ionship between t h e  in t ens i ty  
a t  maximum l i g h t  1, and the  mass outside of  t h e  atmosphere 
there  are f lares--as  there  frequently are i n  small-camera br ight  meteors-- 
o r  diff'use fragmentation, as i n  Super-Schmidt meteors, t h a t  r e l a t i o n  
ceases t o  be meaningf'ul. 

. When 

(2 )  He  wrote such a relat ion,  following Levin (1956), i n  a form very 
similar t o  t h a t  of Herlofson (1948), which i s  known t o  be a rough approxi- 
mation even i n  t h e  cases i n  which the theory could be successful ly  used 
(Verniani, 1961). 

(3)  I n  the  same equation Ceplecha eliminated t h e  mass m, by making 
use of another equation of Levin (1956), obtained with the  assumption 
tha t  the  veloci ty  of the  meteoroid does not change during the e n t i r e  path. 
Moreover, t h a t  equation contains the atmospheric densi ty  of t h e  end point 
of t h e  meteor. Such a value i s  often meaningless because of t h e  very 
i r r egu la r  behavior of meteors i n  the  last  par t  of their recorded path, 
as a result of crumbling and fragmentation (Jacchia, 1955). 
from the  corresponding theore t ica l  value by an order of magnitude. 

It may d i f f e r  

(4) The Harvard small-camera material, especial ly  the  earlier 
Massachusetts meteors, i s  very inhomogeneous w i t h  regard t o  t h e  accuracy of 
the  data. Therefore a good analysis can be done not only by re jec t ing  those 
meteors f o r  which t h e  time of appearance i s  poorly determined o r  t h e  mass i s  
not accurately known, but  a l so  by using a su i tab le  system of weights, as 
Jacchia did i n  h i s  1952 analysis,  f o r  taking in to  account t he  accuracy of 
the  computed decelerations. This accuracy var ies  remarkably from one meteor 
t o  another. 

( 5 )  Ceplecha used the  Rocket Panel atmosphere, which now is  known t o  
be i n  e r r o r  both i n  slope and i n  density values at  meteoric heights.  

( 6 )  He found n by p lo t t i ng  a cer ta in  computed quant i ty  versus log 
v, . 
Even i f  t h e  other  strong causes o f  e r r o r  w e r e  absent, t h e  small value of ' 

n i n  comparison w i t h  9 c lear ly  makes h i s  determination highly unrel iable ,  
because of the  nonnegligible fluctuations of t he  computed quant i t ies  caused 
by (a) experimental errors ;  (b)  variations i n  the  drag coef f ic ien t  with 
height and velocity;  ( e )  i r r egu la r i t i e s  i n  the  shape of the meteoroids; and 
(d)  f luctuat ions from the standard atmosphere. 

The theo re t i ca l  slope of the expected s t r a igh t  l i n e  i s  9 + n . 

-7 - 



( 7 )  The masses of Hawkins-Southworth meteors a re  averages of 
individual  values given by each of t he  two p la tes  of t he  same meteor 
and computed with relat ionship (48) of Hawkins' (1957) paper on the  
method of reduction of s h o r t - t r a i l  meteors. Of%en there  w a s  a la rge  
difference between the  two individual  values. Although on the  average 
those masses represent a fair approximation, they are much less prec ise  
than the  masses Jacchia computed f o r  small-camera meteors and f o r  h i s  
selected sample of l ong- t r a i l  Super-Schmidt meteors by in tegra t ing  t h e  
l i g h t  curve (Jacchia, physical  data  not yet  published). 
can be another reason why the  exponent Ceplecha found f o r  Super-Schmidt 
f a i n t  meteors i s  so much fu r the r  off  the mark than t h a t  of small-camera 
meteors. 
fragmentation among the  two samples of meteors. 

This difference 

The pr inc ipa l  reason i s  the  bas i ca l ly  d i f f e ren t  degree of 

Levin (1956) made a s t a t i s t i c a l  ve r i f i ca t ion  of t he  theory of 
a B  
co v, cos 'Z meteors by writ ing I - m 

path)  and by computing a, 8 and y by least squares f o r  H a r v a r d  small- 
camera data.  The masses Levin used w e r e  those computed by Jacchia on 
t h e  bas i s  of 'rv - v; therefore ,  according t o  single-body theory, t h e  
value of B nust be 4. The r e su l t ,  @ = 3.98 f 0.27 and a, = 1.00 f 0.05, 
confirmed tha t  f o r  br ight  meteors t he  c l a s s i c  theory i s  adequate t o  , 
describe accurately the  average behavior of the  phenomenon. On t h e  other  
hand the  computed value of y w a s  completely d i f f e ren t  from the  expected 
value of 1. 
on the  Super-Schmidt meteors reduced by Hawkins and Southworth, but t h e  
r e s u l t  w a s  quite d i f fe ren t .  They divided those meteors i n t o  t w o  groups, 
according t o  the d i f f e ren t  degree of fragmentation estimated from the  
beginning and end heights. The group of less-fragmenting meteors gave 
@ = 3.67 5 0.08, while the other  group,containing meteors t h a t  experienced 
more severe fragmentation,gave @ = 2.67 rt 0.10. These deviations from 
theory can be e a s i l y  understood with the  a id  of some of t h e  preceding 
remarks on Ceplecha's work. They show t h a t  one cannot ex t r ac t  any infor -  
mation on n by following t h a t  route. A s  a cur iosi ty ,  i n  t he  above-mentioned 
book Levin, by using the  masses computed with 6pik 's  value of T ~ ~ ,  determines 
the  average visual magnitude o f  a meteor having m, = 1 g, v, = 10 km/s 
Then, making use of t h i s  value, he reverses h i s  procedure t o  f ind  the  value 
of -rev. 
from 6pik's  value. 

(ZR = zenith angle of the meteor R m 

Levin and Majeva (1963) did t h e  same kind of ve r i f i ca t ion  

-1 . 
It i s  pecul ia r  t h a t  t he  r e s u l t  b.e ge ts  i s  completely d i f f e ren t  

I s h a l l  conclude t h i s  introduction with some b r i e f  remarks on the  
un i t s  i n  which the  luminous in t ens i ty  (and consequently t h e  luminous 
eff ic iency)  i s  expressed. 
i n  ergs;  i n  t h i s  case the  r e l a t ion  between t h e  v isua l  magnitude M of a 

meteor and the corresponding in t ens i ty  Iv has been given by 6pik (1958) as 

I n  many papers t h e  luminous i n t e n s i t y  i s  measured 

v 

. 

. 

Mv = 24.30 - 2.5 log  I (6) v '  
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where the  constant 24.30 is  determined by taking i n t o  account the  
s e n s i t i v i t y  curve of t he  human eye; it corresponds t o  the  sun's s t e l l a r  
magnitude -26.72 and t o  the  energy d i s t r ibu t ion  of t he  s o l a r  radiat ion.  
This system, i n  which T I s  a dimensionless quantity,  seems qui te  na tu ra l  
t o  t he  phys ic i s t ,  but it is  not convenient f o r  p r a c t i c a l  use, espec ia l ly  
i n  photographic work. Therefore Jacchia (1948) introduced . a  system that 
takes a s  un i t  of i n t ens i ty  t h a t  of a star of magnitude zero. I n  t h i s  

system T has dimensions zero mag g-'cm-*s3 . 
use Jacchia ' s  system, which has the  clear advantage of being c loser  t o  
t he  observed quant i t ies ,  i .e . ,  t o  the magnitudes. I n  Jacchia ' s  system 
we have 

I n  the  following we w i l l  

( 7 )  P 
!$ = - 2.5 log I 

and 

M = - 2.5 log Iv ( 7 4  V 

From equations (6) and ("a) it follows immediately t h a t  the  logarithmic 
difference between T expressed i n  cgs and i n  Jacchia ' s  un i t s  i s  9.72. 
Therefore we have 

v 

For br ight  meteors, t o  which i t  color-index correct ion -1.8 
we have 

i s  applicable,  

I n  addi t ion  t o  Jacchia ' s  uni ts  fo r  I and T we w i l l  use cgs un i t s  f o r  

a l l  o ther  quant i t ies .  
P P' 

*he value used i n  Harvard's work i s  -18.91. The difference of 0.12 r e s u l t s  
pom the  differer ; t  form of eq. ( 6 ) ,  which was previously establ ished by 
Opik (1937) a s :  M = 24.6 - 2.5 log Iv . v 
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Procedure used f o r  determining n 

The drag equation i s  usually wr i t ten  i n  the  form 

where a i s  the deceleration of t he  meteor; p i t s  density;  y, t h e  drag 
coeff ic ient ;  and A, t h e  shape factor .  
y ie lds  

m’ 
The in tegra t ion  of equation (2)  

t 
mass can be neglected; t h i s  should be correct  i n  most cases (Jacchia, 
1948; Verniani, 1959). 

being the  time at which the  meteor ends. W e  assume t h a t  t h e  terminal 
E 

Equation (9) may be wr i t ten  

where E = 

some ins t an t  between t and tE . 
Eventually, by eliminating m between equations (8) and (lo), w e  obtain 

Ipdt i s  the  integrated brightness,  and i s  a value of v a t  

The symbol T r e fe r s  t o  the  same veloci ty .  
P 

8 
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I n  wri t ing equation (ll), we admit the equal i ty  of t h e  "dynamic" mass 
derived from the  drag equation and of t h e  "photometric" mass obtained 
by in tegra t ing  t h e  l i g h t  curve. Such an assumption i s  va l id  only f o r  
meteors t h a t  ab la te  without fragmenting. Therefore, f o r  most of the 
Super-Schmidt meteors, which crumble during t h e i r  f l i g h t  i n  the atmosphere, 
such an assumption i s  not r ight .  It i s  wel l  known t h a t  the photometric 
mass takes i n t o  account t he  l i g h t  emitted from a l l  fragments and therefore  
may a l s o  be considered r e l i ab le  f o r  fragmenting meteors. I n  contrast ,  t h e  
dynamic mass corresponds only t o  the mass of t he  l a rge r  fragments t o  which 
the  measured deceleration refers .  We must conclude t h a t  i n  t h e  general  
case, when fragnentation i s  present, equation (11) overestimates 

We w i l l  see i n  sect ion b )  under "Data and resul ts" ,  however, t h a t  

it i s  always possible t o  mke use of equation (11) by taking i n t o  accuunt 
t h e  e f fec ts  of fragmentation by means of Jacchia 's  fragmentation index x . 

. pm 

The photographic data  a l l o w  the determination of t he  ve loc i ty  v, 
decelerat ion a, integrated brightness E and height z. The U. S. Standard 
Atmosphere (1962) gives pa as function of z. The Super-Schmidt meteors 
have several  decelerations each; we w i l l  see t h a t  t h e  most r e l i a b l e  f o r  
our purpose a re  those near t o  the  beginning of t h e  l i gh t .  
each meteor only one value G has been computed. 
t o  t h e  value of v corresponding t o  m = 

Jacchia 's  mass-loss parameter s. Inspection of t h e  l i g h t  curves and of t h e  
observational veloci ty  curves shows 

approximation of 7 . 
It i s  of t he  order of 1 or 2 percent f o r  slow meteors and goes down t o  
0.1 o r  0.2 percent f o r  the  fast ones. 

Therefore, f o r  
We assumed G t o  be equal 

ma, i .e.,  t o  t he  value zero of 

t h a t  vs-o - represents a very adequate 
The difference between 7 and va i s  generally very small. 

The shape f ac to r  A i s  unknown. According t o  6pik (1958), rotat ion,  
vibrat ion and osc i l l a t ion  of meteors during t h e i r  f l i g h t  smooth t h e i r  shape 
so  t h a t  we can ignore the  possible var ia t ions of A during t h e  meteor l i f e  

and accept t he  value A = = 1.21  corresponding t o  a spherical  shape. 

This value i s  usually emploied i n  Harvard's work. 
makes useless any search f o r  a be t t e r  approximation. 
e f f ec t  l a t e r .  

The e f f ec t  of fragmentation 
We s h a l l  discuss t h i s  

-11- 



The l a s t  quantity t o  be considered i s  t h e  drag coef f ic ien t  y . 
This quantity i s  not w e l l  known. The results yielded by an in te rpola t ion  
formula worked out by Baker (1959) on the  bas i s  of t he  theory of Baker 
and C h a r w a t  (1958) f o r  t he  drag coef f ic ien t  i n  the  t r a n s i t i o n a l  flow 
region do not agree with recent experimental r e su l t s  (Maslach and Schaaf, 
1962). 
t o  continuum flow t o  heights g rea t e r  than the  r ea l i t y .  
communication) has given another expression for y i n  - the  form 

Baker's formula s h i f t s  t he  t r a n s i t i o n  from the  f r ee  molecular f low 
Cook (1963, pr iva te  

where r, the equivalent radius of t h e  p e l l e t ,  and p a r e  expressed i n  cgs 

uni t s .  This equation appl ies  only t o  compact bodies, l i k e  meteorites and 
a s t e ro ida l  meteors." 
shows t h a t  many of these are s t i l l  i n  f r ee  molecular flow, although the  
hypothesis t ha t  these meteors a r e  s ing le  compact bodies i s  ce r t a in ly  yrong 
f o r  most of them. 
we w i l l  assume t h a t  a l l  t he  Super-Schmidt meteors are i n  free molecular 
flow. 
satell i tes i n  f r e e  molecular flow (Cook 1959; Jacchia 1963). 
i s  a l s o  used i n  the  general analysis  of t he  physical da ta  of t h e  Super- 
Schmidt meteors (Jacchia, Verniani and Briggs, unpublished). 

a 

The use of equation (12)  f o r  t he  Super-Schmidt meteors 

For b e t t e r  consideration of t he  e f f e c t  of fragmentation, 

We w i l l  therefore  use y = yF = 1.1, t h e  value generally assumed f o r  

This value 

I f  we make the  extreme assumption t h a t  equation (12)  may a l s o  be 
applied t o  the Super-Schmidt meteors, considered as s ingle  compact bodies, 
we obtain from the  observational data  a value of  n only s l i g h t l y  smaller 
than t h a t  obtained by assuming y = y . The difference i s  about 1 5  percent, 

which i s  very reassuring, s ince it means t h a t  i f  y i s  not exact ly  what we 
have chosen, the r e l i a b i l i t y  of the  f i n a l  result i s  not affected.  

F 

The data  employed f o r  t h e  analysis  a r e  those of t he  413 Super-Schmidt 
meteors precisely reduced by Jacchia (astronomical da ta  published by Jacchia 
and Whipple, 1961; physical  data  not yet  published). The old Harvard small- 
camera data  have been used separately,  although t h e i r  accuracy and homo- 
geneity i s  much poorer than t h a t  of t he  Super-Schmidt, t o  provide a bas i s  
of comparison f o r  l a rge r  masses and lower heights.  For these  meteors, which 
a r e  generally very br ight ,  we have used Cook's expression (12) f o r  y . 

*In eq. (12) y tends to i n f i n i t y  when pa + 0 . 
( 1 2 )  y ie lds  a value grea te r  than y 

be taken equal t o  y 

Therefore, when eq. 
= 1.1, it i s  understood t h a t  y must 

F 

F 
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2 
P m  

affected by observational errors .  The ve loc i t i e s  and t h e  heights are 
qui te  r e l i ab le .  
Schmidt meteors i s  of the  order of 0.1 percent. The small-camera meteors 
are a l s o  generally accurate i n  v t o  b e t t e r  than 1 percent. 
a t ions ,  on the  other  hand, a r e  not so r e l i ab le ;  t he  probable e r r o r  may 
d i f f e r  widely from meteor t o  meteor. 
camera meteors, whose probable e r m s  range from 0.01 t o  10 times t h e  
value of the  decelerat ion itself. 
e r r o r  var ies  great ly ,  depending on the number of breaks used t o  compute 
the  deceleration. The integrated brightness i s  generally more r e l i a b l e  
when t i s  near t h e  beginning time tg, because of t he  uncertainty i n  the 

in te rpola t ion  t o  zero of t he  in tens i ty  curve a t  the  end of t he  detectable  

t r a j ec to ry .  The lower r e l i a b i l i t y  of t he  values of T /p2  computed from 

da ta  near t he  end of the  t ra jec tory  i s  augmented by t h e  e f f e c t s  of fragmen- 
t a t ion ,  which a f f e c t s  equation (8) by increasing the  cross-sectional area 
A .  
system of weights, which w i l l  take a l l  these  f ac to r s  i n t o  account. 
analysis  of t he  small-camera data  f o r  determining t h e  atmospheric dens i ty  
as a function of t h e  height Jacchia (1952) solved the  same problem. 
Therefore I have used here a s l i gh t ly  modified form of the  weight function 
introduced by Jacchia. 
general  analysis  of the  Super-Schmidt physical  data,  which will be published 
soon. 

For a l l  meteors t he  quantity $p v2a-' (proportional t o  p r ) has 

Then a weighted average has been 

The quant i t ies  involved i n  the  computation of T /p  a r e  variously 

The e r r o r  i n  the  velocity f o r  about ha l f  of t he  Super- 

The deceler-  

This is  p a r t i c u l a r l y  true for small- 

Also, t h e  r e l i a b i l i t y  of t he  probable 

P m  

Hence it i s  c l e a r  that, t o  do a correct  analysis ,  we m u s t  use a su i t ab le  
I n  h i s  

This modified formula has been a l s o  used i n  t h e  

a m a  
been computed from each deceleration. 
taken for  every meteor, by using a weight p defined as 

when 

$(x) = 3 [1+ e r f  (2.5 log  x - 2.11 ; (14) 

p.e. is  the  probable e r r o r  i n  the decelerat ion a; and N is  the  number of 
shu t t e r  breaks used i n  the  least-squares so lu t ion  (which contains 3 unknowns) 
f o r  determining a. 
YAPav2am1, I have computed T / p  f o r  each meteor t o  which a weight w = (a)' 
has been assigned f o r  t he  f i n a l a n a l y s i s .  
because, s ince the  r e su l t s  obtained f o r  meteors with many decelerat ions a re  

Then, by means of t he  weighted average values of 
1 2 

P m  
I have put w i n t o  t h i s  form 
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somewhat more r e l i ab le  than those obtained f o r  meteors with only two 
decelerations,. we must a t t r i b u t e  a l a rge r  weight t o  them. 
would overweight the  slow meteors, which are generally longer, and t h e  
f i n a l  analysis would be biased. 
have been done t o  invest igate  how much the  chosen 
a f f ec t s  the  f i n a l  resu l t s .  The r e su l t  was t h a t  t he  analysis  of t he  
Super-Schmidt meteors i s  only s l i g h t l y  affected by the  system of weights. 
This w a s  t o  be expected because of t he  general r e l i a b i l i t y  and homogeneity 
of Jacchia 's  Super-Schmidt material .  For small-camera meteors, the  
inaccuracy i n  the  determination of t he  decelerat ion var ies  the  weights p 
from l e s s  than 0 . 0 1 t o  about 9, and the  choice of t h e  weight system is,  
conversely, very important. 

Taking w = Cp 

Calculations with d i f f e ren t  weights 
system of weights 

2 The quantity ~ ~ / p ~  varies with the  veloci ty  7 of the  meteor. W e  
s h a l l  a t t r i b u t e  t h i s  var ia t ion  uniquely t o  T , i .e . ,  we s h a l l  assume t h a t  
t h e  meteor density pm does not depend systematically on the  velocity.  O f  

course there  is  no reason why the  meteor densi ty  should vary continuously 
with the  velocity. Nevertheless, w e  must consider two d i f f e ren t  circwn- 
stances tha t ,  i f  ignored, would a f f ec t  the  conclusions, perhaps remarkably. 
The f i r s t  i s  the  poss ib i l i t y  t h a t  some among the  very slow meteors may be 
of as te ro ida l  or igin;  i n  t h i s  case the  value of T / p  i n  t he  region of 
t he  lowest veloci t ies  would be smaller and our determination of n over- 
estimated. 
t he  analysis  a l l  t h e  meteors t h a t  show a difference from t h e  average l a r g e r  
than the  expected s c a t t e r  i n  the  values. 
c l ea r ly  suspected of having d i f f e ren t  dens i t ies ,  but it i s  a d i f f i c u l t  t a s k  
t o  decide whether or not cer ta in  others should be excluded. 

2 
p m  

It i s  easy enough t o  obviate t h i s  d i f f i c u l t y  by taking out of 

Naturally, some meteors w i l l  be 

The second circumstance t o  keep i n  mind i s  Jacchia ' s  (1958) discovery 
of t he  difference i n  fragmentabili ty between the  meteors of t he  J u p i t e r  
family and the long-period meteors. 
t h a t  t h e  d i f fe ren t  fragmentation may correspond t o  a difference i n  dens i ty  
between t h e  two groups. 
long-period meteors begin t o  appear a t  a height t h a t  on t h e  average i s  
about 4 km greater  than t h a t  of short-period meteors (Jacchia, 1963). 
Therefore the sporadic meteors have been divided i n  two groups according 
t o  t h e i r  aphelion distance i n  order t o  search f o r  a difference i n  the  

2 averages of the T / p  . Such a difference has ac tua l ly  been found, and 
P m  

we w i l l  see t h a t  taking it i n t o  account changes n appreciably, because 
one group i s  concentrated toward the  low ve loc i t i e s  
t h e  high veloci t ies .  Obviously t h i s  difference could be caused e i t h e r  by 
a var ia t ion  of T 

d i f f e ren t  densi t ies  o r  by a var ia t ion  of both these quant i t ies .  However, 

ThZs difference leads us t o  th ink  

This hypothesis i s  corroborated by t h e  f ac t  t h a t  

and the  other, toward 

resu l t ing  from differences i n  chemical composition o r  by 
P 

-14- 



t h e  well-established current ideas on the  cometary o r ig in  of meteors 
and on Whipple's (1950, 1951) icy-comet model lead us t o  conclude that 
the  difference must be ascribed t o  the densi ty  only. 
t o  Whipple' s theory, short-period comets evaporate f a s t e r ,  which means 
that short-period meteors should come from the  inner  core of t h e i r  parent 
comets, while t he  long-period meteors should come from more ex terna l  
layers ,  subjected during the  comet's l i f e  t o  a smaller pressure.  
therefore  expect t h a t  short-period meteors have a g rea t e r  s o l i d i t y  than 
long-period ones. 
among meteors with much d i f f e ren t  o r b i t a l  cha rac t e r i s t i c s ,  while it i s  
d i f f i c u l t  t o  f ind  reasons f o r  jus t i fy ing  a difference i n  composition. 

I n  f ac t ,  according 

We can 

Thus it i s  easy t o  understand a difference i n  densi ty  

We should expect a nonsystematic spread i n  the  values of t he  dens i ty  

Pm 
shape of the  bodies, the  observational e r ro r s  and t h e  e f f e c t s  of fragmen- 
t a t ion ,  which w i l l  be discussed i n  d e t a i l  l a t e r ,  t h i s  spread must give a 

wide s c a t t e r  i n  the  individual values of T p2 . dm 
a l l  of whose causes a r e  random and unpredictable, we may expect t o  a r r i v e  
at  correct  conclusions by taking averages of T pm i n  groups with a l a rge  
number of meteors i n  the  same range of ve loc i t i e s  o r  be t t e r ,  with a least- 
squares solut ion f o r  a l l  t he  data. 

among sporadic meteors. Taken together with the  i r r e g u l a r i t y  i n  t h e  

I n  s p i t e  of t h i s  s c a t t e r ,  

d '  

Data and r e su l t s  

a )  The value of n.--For the  determination of n by the  least-squares 
method it i s  convenient t o  put the dependence of 7 on v i n  a logarithmic* 
form: P 

log 2 'P = log 9 + n log v , 
Pm Pm 

where v i s  ? Of the  413 or ig ina l  Super-Schmidt meteors, 1 2  a r e  not 
ava i lab le  f o r  our purpose because some bas ic  physical  data  a re  missing o r  
because t h e i r  precis ion i s  lower. 
c l ea r ly  anomalous log T 

(10 percent of t he  t o t a l  number), 36 of which a r e  sporadic. 
concerns 361 meteors, 247 sporadic and 114 shower. 

Taking out a l l  the  meteors having a 
pm leads us t o  eliminate from the  analysis  40 meteors 

Thus t h e  ana lys i s  
d '  

The least-squares  method 

*In the  following, log always indicates decimal logarithms. 
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gives f o r  the sporadic meteors n = 1.52 6 0.15. This resu l t ,  however, 
i s  not t o  be considered f i n a l  because of t he  difference i n  densi ty  
between long-period meteors and those of t he  J u p i t e r  family. Table 1* 
contains the uncorrected average values of log T ~ / ~ E  f o r  groups of 

increasing velocity.  These values are given only as a reference f o r  
comparison with the  f i n a l  data. Before correct ing the  data, we computed 
two other  least-squares solut ions f o r  estimating how much t h e  chosen form 
of t h e  weight w could a f f e c t  t h e  analysis.  
cons$dered. 
i n  t h e  other, individual  decelerat ions instead of individual  meteors have 
been used. 
t h e  def in i t ion  of t he  weight w a f f e c t s  ne i ther  t h e  f i n a l  r e su l t s  nor t h e i r  
r e l i a b i l i t y .  

Two extreme cases have been 
I n  t h e  f irst ,  a l l  t h e  weights w have been put equal t o  1; 

The r e s u l t s  a r e  both qui te  close t o  n = 1.5, which confirms t h a t  

Let  us now examine how t o  introduce a correct ion f o r  the  difference 
i n  dens i ty  between meteors of the  Jup i t e r  family and long-period meteors. 
By dividing the sporadic meteors i n t o  two groups, one having the  aphelion 
dis tance Q C 7 a.u. and the  other  having Q > 7 a.u., we ge t  t h e  r e s q t s  
l i s t e d  i n  tab le  2 and p lo t ted  i n  f igure 1. These r e s u l t s  show a mean 

difference Of about 0.30 between the  values of log ~ ~ / p ~  f o r  t h e  two groups. 

This means t h a t  t he  average densi ty  of the  short-period meteors is  about 
1 .4  times the densi ty  of long-period meteors. 

m 

The reduction of the  values 

of log  T /p' t o  the  same ve loc i ty  has been done with successive approxi- 

mations, which lead t o  a value of n close t o  1. If we compute two separate 
least-squares soluticns f o r  the  two groups, we do not obtain r e l i ab le  results. 
The reasons for  t h i s  are very c lear :  (a )  The range i n  veloci ty  becomes too  
small f o r  both groups; and ( b )  t h e  s t a t i s t i c a l  f luc tua t ions  of t h e  data 
become important, because t h e  amount of data i s  diminished. These f luctua-  
t i o n s  a re  c lear ly  i l l u s t r a t e d  i n  f igure  1, which shows t h a t  they a r e  
pa r t i cu la r ly  important f o r  the  long-period meteors, which have a very la rge  
s c a t t e r .  I f  we remove the  extreme-velocity groups from the  small-aphelion- 
dis tance meteors, w e  get a slope very close t o  n = 1. Figure 1 a l s o  
i l lus t ra tes  tha t  t h e  slope n = 1 does not contradict  t h e  very i r r egu la r  
t rend  of t he  long-period meteors. We could correct  t he  results by reducing 
t h e  average values of veloci ty  groups t o  the  densi ty  of t h e  meteors with 
Q < 7 a.u. and i n  t h i s  way get t he  f i n a l  value of n. I n  order t o  study t h e  
residuals ,  however, it i s  b e t t e r  a l s o  t o  correct  the individual  data by sub- 

P m  

- 
2 t r a c t i n g  0.30 from a l l  t he  values of log T / p m  belonging t o  meteors with 

Q > 7 a.u. 
1' 

*In t a b l e  1, as i n  t h e  following t ab le s ,  t h e  numerical values a r e  sometimes 
given, f o r  mathematical purposes only, with one d i g i t  more than those 
r e a l l y  s ignif icant .  
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A r t e r  the  reduction of a l l  meteors t o  t h e  average densi ty  of t h e  
group of t he  Jup i t e r  family, t he  least-squares method gives 

n = 1.01 f 0.15 ; (16) 

log = - 17.80 f 0.98 . (17) 
'm 

The e r r o r  i n  ~~dp; i s  qui te  large,  because of t'ne la rge  extrapolat ion 

involved from the meteor ve loc i t ies '  range t o  v = 1 cmsW1 . 
e r r o r  i n  T 

The ac tua l  
i n  t h e  range 10-70 kms-l i n  which we are in te res ted  is, 

P 
however, small enough. The least e r ro r  i n  t h e  determination of log 
i s  that corresponding t o  t h e  centroid of t he  d is t r ibu t ion ,  f o r  which we 
have 

log T p: = -11.281 f 0.030;. log v = 6.433 f 0.008 . (18) p/ 

For each other  point, t h e  e r r o r  e, should be given by 

= 0.03 + 0.15xli0g v - 6.4331 . (19)  
V 

I n  t h e  following, however, it i s  convenient t o  adopt n = 1.0, so t h a t  t h e  

e r r o r  i n  log T / p  will be constant and equal t o  0.03. Equation (17) now 
reads 

2 
~m 

By sor t ing  the  sporadic meteors i n t o  groups according t o  t h e i r  

veloci ty  and computing the  mean values of log T / p 2  
shown i n  tab les  3 and 4 and plotted i n  f igures  2 and 3. 
do not show any other  de f in i t e  dependence on velocity,  t h e  power-law 
T = T $I i s  suf f ic ien t ly  close t o  r ea l i t y .  It i s  important t o  remember 

t h a t  t he  individual i n t ens i ty  i n  each wavelength i s  a f'unction of veloci ty  

we obtain the  r e su l t s  
P m '  

Since t h e  residuals  

P OP 
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and t h a t  our T 

v i n  some complicated, almost ce r t a in ly  i r r egu la r  manner. 
have a check on the  correct ion f o r  t he  Q e f f e c t  on the  values of log 
~ ~ / p :  , w e  have arranged 10 equally populated groups of sporadic meteors 
i n  order of increasing Q and have computed the  averages of the  residuals  
f o r  each of them. The cor re la t ion  coeff ic ient  between t h e  average res id-  
uals  and Q i s  -0.28, which shows a p r a c t i c a l  absence of correlat ion,  
because we  are dealing with averages and not with individual  values f o r  
which the  large s c a t t e r  could lower t h e  cor re la t ion  coef f ic ien t .  When Q 
increases, the residuals  tend t o  pass from negative t o  pos i t ive  values 
fo r  meteors with Q < 7 a.u. ,  but t h i s  cannot a f f e c t  t h e  results i n  any 
way. I n  fact ,  f o r  meteors of t he  J u p i t e r  family, there  i s  no cor re la t ion  
between v and Q . 

corresponds t o  integrated l i g h t ,  which must depend on 
P 

I n  order t o  

Figure 4 shows the  average values of l o g  T / p 2  f o r  each shower; t he  
~m 

same data  a re  l i s t ed  with more details  i n  table 5. 
it i s  unlikely t h a t  d i f f e ren t  showers have appreciably d i f f e ren t  com- 
pos i t ion  t o  account f o r  var ia t ions i n  I- * conversely, t h e i r  d i f f e ren t  

ages and distances from the  sun may account f o r  differences i n  density.  

A s  I have said before, 

P' 
. .  

2 
- ( log 'p/p:)sporadic, v = v shower 

Accordingly, the differences ( log  T / p  ) 

are a t t r ibu ted  only t o  a difference i n  density.  
p m shower 

With t h i s  assumption t h e  
r a t io s ,  contained i n  t a b l e  5, of t he  densi ty  of each shower t o  the  average 
densi ty  of the sporadic meteors with Q < 7 a.u. have been computed. 
Northern and Southern Taurids, Southern L-Aquarids and &-Aquarids, Perseids, 
Lyrids qnd a-Hydrids have densi ty  values close t o  t h a t  of t he  sporadic 
meteors of the J u p i t e r  family. Conversely, Quadrantids, Orionids, w-Cygnids 
and a-Capricornids have about the  same densi ty  as the  sporadic long-period 
meteors. A s  the reader can see from the  ind ica t ive  values of Q l i s t e d  i n  
t a b l e  5 ,  however, some of the showers with Q > 7 a.u. have approximately 
the  same density as the  sporadic meteors with Q < 7 a.u. and vice versa. 
The members of t he  Geminid shower have a densi ty  four  times l a r g e r  than t h a t  
of the  sporadic meteors. This confirms a r e s u l t  t h a t  Jacchia obtained i n  
h i s  e a r l i e r  work. The extremely low densi ty  of Draconids i s  a l s o  confirmed, 
but the  figures i n  t h a t  case do not have much meaning because t h e  e f f e c t s  of 
fragmentation a re  too  large t o  be properly taken i n t o  account. 
confirm t h a t  each shower has i t s  own pecu l i a r i t i e s ,  as Jacchia found from 
h i s  analysis  of points  near t he  beginning of meteors. 

The results 



I -  

b) Effects  of fragmentation.--Let us now discuss the  e f f e c t s  of 
fragmentation on the computed values of log T dp; . Jacchia (1955) found 
t h a t  t he  anomalously large increases of t h e  observed decelerat ions of t h e  
Super-Schmidt meteors a re  explained by progressive fragmentation. 
introduced, as a measure of t he  phenomenon, t he  fragmentation index x , 
defined as 

He  

a 
obs 

9 
d 
ds 

x = - log - 
8T 

where a 
&r is  the  decelerat ion computed from the  drag equation by using the  photo- 
metric mass; and s i s  the mass-loss parameter, defined as 

is  the  observed deceleration ( a  i n  the preceding equations); 
obs 

s = logk - 1) . 

The fragmentation index x i s  not easy t o  determine because it involves 
the second-time der ivat ive of t he  velocity. Since x is, however, the 
quant i ty  tha t  bes t  describes the fragmentation, it i s  very he lpfu l  f o r  
correct ing data. I ts  meaning l i e s  i n  i t s  being approximately constant 
f o r  each meteor during the detectable p a r t  of i t s  f l i g h t .  If fragmen- 
t a t i o n  were absent we would find, i n  the  limits of observational e r ror ,  
the same value of T / p  
a t ions  introduced i n  equation (11) r e f e r  t o .  But t he  fragmentation 
introduces a var ia t ion i n  the  computed values of T p/p: . I n  fac t ,  by using 

equations (11) and (20) we can eas i ly  f ind  the  r e l a t ion  between the values 
of log T 

t o  s and so: 

2 
P m  

fo r  whatever point of the  t r a j e c t o r y  t h e  deceler- 

p2  computed i n  two d i f fe ren t  points  of the  t r a j e c t o r y  corresponding dnl 
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We can immediately see the  order of magnitude of t he  var ia t ion  in t ro -  
duced by the  fragmentation i f  we consider a meteor f o r  which several  
decelerations have been determined and f o r  which x = 0.25, the  mean 
value f o r  sporadic meteors. The difference A s  between the  value of s 
corresponding t o  the  f irst  and t o  the  last  determination of t he  deceler- 

a t ion  i s  about 1. 

I n  case of la rger  X t h e  e f f e c t  is ,  of course, l a rger .  It i s  c l ea r  t h a t  
a l l  t h e  present da ta  should be reduced t o  t h e  value of s corresponding 
t o  the  beginning of fragmentation. 
but we could re fer  t he  values of log T / p  

ning of t he  meteors. This value may be found by ca l ibra t ing  the  r e su l t s  by 
means of t he  nonfragmenting meteors. This i s  not necessary f o r  t he  purpose 
of t h i s  work, because the  use of t h e  weights p, which a t t r i b u t e  grea te r  
importance t o  the  decelerations i n  the  f i r s t  p a r t  of t h e  trai1,when 
fragmentation has not yet  played i t s  ro le ,  a l s o  s a t i s f a c t o r i l y  accomplishes 
t h i s  ' task.  I n  f a c t ,  f o r  the  purpose of empirically f inding out t he  e f fec t  
of fragmentation on the  ac tua l  weighted values of log T / p 2  
meteors with / X I <  0.2 have been selected and processed by the  least-squares 
method. The solution, a f t e r  t he  usual correct ion f o r  Q, i s  n = 1.24 f 0.22 
and log T J P ~  = -11.214 & 0.040 f o r  log v = 6.421 f 0.011. 
of log  T / p  

f igure 3 f o r  comparison with the  resul ts  of a l l  t he  sporadic meteors. 
value 1.24 f o r  n agrees, within the  limits of t he  error,with the  value 1.01 
afforded by the general  solution; it i s  worth noting t h a t  i f  w e  remove from 
the  general  solut ion the  slowest meteors (10 < v < 15 km-l), f o r  which t h e  

average value of l og  T / p  i s  smaller by about 0.3 than the  expected one,* 
we would get  a s l i g h t l y  smaller value of n. A s  a compromise between t h i s  
value and t h a t  afforded by the  low-fragmentation meteors, n = 1 i s  r e a l l y  

t h e  bes t  value f o r  n. 
centroid of the d i s t r ibu t ion  i s  ac tua l ly  very good. 
get -11.213 and -11.268. 
i n  t h e  opposite d i rec t ion ,  as we s h a l l  see, -rp depends on the  degree of 

fragmentation, insofar  as meteors t h a t  do not fragment seem t o  be more e f f i c i e n t  
i n  producing l i gh t .  Anyway, the  consistency of these  results shows the  
r e l i a b i l i t y  of Jacchia 's  weight system, which was used throughout. 

2 
P m  Therefore the  fragmentation changes log  T / p  by 0.75. 

Unfortunately, t h i s  value i s  not known, 
2 

P m  
t o  a value of s near t h e  begin- 

a l l  t he  sporadic 
P m' 

The mean values 
2 

P m  as functions of ve loc i ty  a r e  l i s t e d  i n  t a b l e  6 and p lo t ted  i n  

The 

2 
~m 

The agreement f o r  the  value of log T / p 2  P m  
i n  the  

For l og  v = 6.42 we 
Although we might expect a l a rge r  difference and 

*This i s  because of t he  presence i n  the  group of some meteors t h a t ,  although 
they do not c lear ly  have the charac te r i s t ics  of t he  a s t e ro ida l  meteors, 
appear t o  have a l a r g e r  density. We cannot even exclude t h e  p o s s i b i l i t y  
t h a t  t he  luminous eff ic iency descreases more rapidly than T - v f o r  meteors 
slower than 15  lans''( Jacchia, 1949). This las t  p o s s i b i l i t y  seems, however, 
t o  be very unlikely. 
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We must remark that there  are cases i n  which ne i ther  x nor t h e  
weight system i s  su f f i c i en t  t o  find out t he  correct  value of log 
7dpm by using equation (11). This is t r u e  when a meteor breaks up 
i n t o  NF fragments of approximately equal mass before it i s  detected 
o r  before the  e a r l i e s t  decelerat ion is  measured. This i s  t h e  case of t he  
so-caxled "abrupt -beginning meteors," which appear suddenly at  o r  very 
near t h e  maximum l i g h t ,  and of the  very shor t  meteors, whose l i g h t  curve 
i s  p r a c t i c a l l y  reduced only t o  a f la re .  I n  these cases the  value of 
log  T p: i s  overestimated, an6 it is easy t o  see t h a t  t he  difference 
between the  correct  and the  computed value i s  log  N 
number of these kinds of meteors i s  small, and most of them are among 
those rejected from the  analysis  because of t he  c l ea r ly  anomalous value 

of log g p m  
jeopardized by the  e f f ec t s  of fragmentation. 

2 

Fortunately, t he  F '  
d 

Consequently, t he  r e l i a b i l i t y  of t he  r e su l t s  does not seem 

It is very important t o  note that the  broad s c a t t e r  among t h e  

individual  values of log T 

I n  f ac t ,  t he  average deviat ion of an i n d i v i d u d  value from the  l e a s t -  
squares general  so lu t ion  i s  0.53, while  t he  corresponding average deviat ion 
f o r  low-fragmentation meteors is  0.51. The average 1x1 f o r  t h i s  last group 
i s  0.08; the  average individual difference from the  average value of K! - 0.2, 

p, i s  not t he  r e su l t  of t he  fragmentation. d '  

Therefore the  average value of 3xAs i s  0.05, i . e . ,  one t en th  of t he  ac tua l  
s c a t t e r .  Even taking i n t o  account the  r e l a t ive  inaccuracy with which t h e  
X ' s  a r e  known, t he  discrepancy remains very large.  Several f ac to r s  may 
account f o r  such a large spread, among which i s  the  existence of groups 
of sporadic meteors having d i f fe ren t  density.  On the  other  hand, t h e  mean 

of t h e  average deviations of t he  individual values of log T /p2  f o r  shower 
meteors i s  about 0.4. 
not t h e  only cause of the  sca t t e r .  
the  a c t u a l  error i n  t he  values of the decelerat ion i s  much l a r g e r  than t h e  
i n t e r n a l  e r r o r  previously considered. 

P I P  This shows c l ea r ly  t h a t  t he  difference i n  densi ty  i s  
To explain it, we must remember t h a t  
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A s  a matter of f ac t ,  t he  decelerat ions of t h i s  sample of Super- 
Schmidt meteors have another source of uncertainty: t he  f l u t t e r  t h a t  
affected t h e  ro ta t ion  of t he  camera shut te rs .  When the  t r a i l  covered 
two o r  more cycles of the  f l u t t e r ,  it w a s  possible  t o  eliminate i t s  
e f f ec t  f a i r l y  well, but f o r  shor te r  t r a i l s  a correct ion was impossible 
(Whipple and Jacchia, 1957). 
the  dashes, par t icu lar ly  when wake o r  blending o r  both together  a r e  present,  
makes it impossible t o  know exact ly  t o  what t he  decelerat ion refers. It 
can never be t o o  much emphasized t h a t  very of ten  i n  meteor physics t h e  
quant i t ies  determined from the  observations do not correspond s t r i c t l y  
with those tha t  e n t e r  the  equations of t h e  theory. 

2 

Moreover, t he  elongated and fuzzy form of 

Another source of e r r o r  i n  7dpm is  the  atmospheric density.  W e  
should not forget t h a t  l o c a l  t m n s i e n t  f luctuat ions of t he  atmospheric 
dens i ty  may appreciably a f fec t  t h e  results, s ince T / p  

proport ional  t o  the  t h i r d  power of pa. 

2 
P m  i s  inversely 

c )  Invest igat ion of the  dependence of T on mass.--Let us now examine 
the  problem of the  dependence of t he  luminous e f f ic iency  on t h e  mass of 
meteoroids. By assuming t h a t  T depends on some power P of t he  i n i t i a l  
mass, w e  can write 

P 

( 2 3 )  
1 P  n 

T = K  v m, . 
P 1  

By using equation ( 2 )  we get :  

P 

n -2P 

I + P  - n. where - - 
o f 7  on m, by studying the cor re la t ion  between7 and t h e  t o t a l  integrated 

P P 
brightness Ea . This i s  t r u e  even i f  we assume t h a t  T i s  proport ional  t o  
the  power P of the instantaneous mass. Therefore Jacchia ' s  Super-Schmidt 
sporadic meteors have been arranged i n  three  equally populated groups i n  
order of increasing E, (E, = log Em). 
t ab l e  7 c l ea r ly  show t h a t  T 

check whether the exponent n keeps the  same value when t h e  brightness changes 
by using the  least-squares method f o r  these three  groups, because each group 
corresponds t o  a d i f f e ren t  mean veloci ty  and t h e  a c t u a l  spread i n  v becomes 

Equation (24)  shows t h a t  we can inves t iga te  t h e  dependence 1 

P 

The results,  which are l i s t e d  i n  
does not depend on the  meteor mass. We cannot 

P 
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t o o  small. Only the  intermediate group has roughly t h e  same veloci ty  
d i s t r ibu t ion  over t he  e n t i r e  sample. Most of t h e  meteors that belong 
t o  t h e  f a i n t e s t  group are very slow, while t he  b r igh te s t  group contains 
a great  pa r t  of the fast meteors. It i s  possible, however, t o  arrange 
t h e  sporadic meteors i n  three  groups of d i f f e ren t  brightness but of t he  
same d i s t r ibu t ion  i n  velocity.  The r e su l t s  obtained with t h e  least- 
squares method show t h a t  n decreases as we go from t h e  f a i n t  meteors t o  
the  br ight  ones. This result disagrees Kith the current opinions of 
McKinley (1961), quoted above, and with Opik's theory, according t o  which 
n should decrease with brightness.  
found f o r  a l l  the  sporadic meteors together, and the  s ing le  values corres- 
ponding t o  each group of brightness could, however, hardly be said t o  be 
s igni f icant ,  since they are of t he  same order as the  probable e r r o r  involved 
i n  these determinations. Moreover, t h e  average deviations of one individual  
value of log T p: from t h e  least-squares s t r a igh t  l i n e s  are j u s t  as la rge  
as t h a t  found i n  the  general solution involving a l l  the sporadic meteors. 

Study of f igure 5 ,  i n  which average values of log  T p2 taken i n  in te rva ls  
of 10 kms f o r  each group are plotted,  c l ea r ly  shows t h a t  the  var ia t ions  
of n given by t h e  least-squares method cer ta in ly  r e su l t  more from accidental  
f luctuat ions than from a real difference i n  the  behavior of T .  as function 
of v. 
afforded by t h e  analysis of t h e  small-camera meteors. 
much br ighter  than the  Super-Schmidt meteors, s ince t h e i r  average E, i s  
about 100 times the average E, of the Super-Schmidt meteors. 
of t h e  exponent n of t h e  small-c&mera meteors tu rns  out t o  be very close 
t o  1, as we w i l l  see later.  

The differences between n = 1, as 

d 
-1 dm 

But the f i n a l  proof of t he  independence of n from the % rightness is  
These meteors are 

But t h e  value 

The p o s s i b i l i t y  of a dependence of T on t h e  mass m, has a l s o  been 
s tudied by means of t he  residuals  A , defined as t h e  difference between the 

values of log 
by t h e  least-squares solution. 
f o r  
results are a l s o  p lo t ted  i n  figure 6. 
not depend on the  mass. 

P 

obtained by the  observational data  and those obtained 
Table 8 reports the average values of A 

10 groups of 25 meteors i n  order of increasing brightness.  These 

P It is  c l ea r  once more t h a t  T does 

a )  The luminous eff ic iency as a function of fragmentation.--The 
results of sect ion b )  above lead us t o  invest igate  whether there  i s  some 
cor re la t ion  between the  luminous efficiency and t h e  degree of fragmentation 
of meteoroids. According t o  t h e i r  fragmentation index X , sporadic meteors 
have been sorted i n t o  10 groups, and t h e  weighted averages of t he  residuals  
A have been computed. 
f igure  7. 
coef f ic ien t  i s  -0.73. 
by t h e  least-squares method, i s  

The r e su l t s  are l i s t e d  i n  t a b l e  9 and p lo t ted  i n  

An empirical equation cor re la t ing  & and 2 , obtained 
A weak correlat ion appears between A and X . The cor re la t ion  
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One would expect t h a t  meteors w i t h  a la rge  X had lower density.  
th is  w e r e  so, their  log 7 The 
results show jus t  t h e  opposite: E i s  pos i t ive  f o r  meteors with low x 
and negative for meteors with a high degree of fragmentation. Therefore 
equation (25) may be in te rpre ted  as an ac tua l  dependence of t h e  luminous 
e f f ic iency  on the degree of fragmentation of t he  meteors, such t h a t  a com- 
pact body i s  more e f f i c i e n t  i n  producing l i g h t  than a porous, crumbling 
one. The possible decrease of the densi ty  with increasing X tends t o  
mask t h e  e f fec t ,  so t h a t  the  value 4 of the r a t i o  of the luminous e f f i -  
c iencies  a t  the two extremes has t o  be considered as underestimated. 
It i s  worth noting that the  average value of s' does not vary system- 
a t i c a l l y  with X , so  t h a t  even i f  we reduce the  residuals  t o  t h e  average 
values of 5 ,  we a r r ive  a t  p r a c t i c a l l y  the same results. The same i s  
t r u e  a l s o  i f  we take the  da ta  uncorrected f o r  t h e  difference i n  dens i ty  
between short-  and long-period meteors. 

I f  

p2  should be l a rge r  than  the average. dm 

An explanation of the dependence of -r on X could be found i n  the 
d i f fe ren t  density of the  vapors i n  the  meteoric coma. Low-fragmentation 
meteors should have a denser coma and rad ia t ion  a r i s i n g  from the  co l l i s ions  
among t h e  molecules of the coma i t se l f .  Conversely, t he  rad ia t ion  of the 
most crumbling meteors should be caused by co l l i s ions  between a i r  molecules 
and ablated meteor atoms. On the  bas i s  of such an explanation we should, 
however, a l s o  expect some dependence of T on the mass. We could a l s o  
explain the dependence by a difference of composition among the  sporadic 
meteors such tha t  low-fragmentation meteors contain a l a r g e r  percentage of 
materials having a higher rad ia t ive  e f f ic iency  than crumbling meteors do. 
This does not, however, seem very l i ke ly ,  as I pointed out f o r  shower meteors 
i n  an e a r l i e r  section. I must a l s o  remark t h a t  t h e  residuals  A a r e  s t rongly 
affected by a l l  t he  causes of e r r o r  previously mentioned (observational 
e r rors ,  f luctuat ions i n  the atmosphere, i r r e g u l a r i t i e s  i n  the shape, 
differences i n  densi ty  of t he  meteoroids, and so  on) and tha t  some e r r o r  i s  
a l s o  present i n  the  values of X , as i s  shown by t h e  number of meteors 
having X < 0 . 
w i t h  caution. 

P 

P 

Therefore the  v a l i d i t y  of equation (25) must be considered 

A c l ea re r  correlat ion a l s o  e x i s t s  between Z and , CT being t h e  
coef f ic ien t  of the mass equation 

m - = o v i  . m 
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The r e su l t s ,  contained i n  t a b l e  10, are  p lo t ted  i n  f igure 8. 
regression l i n e  is  

The 

= (-7.03 f 1.45) - (0.63 f 0.13) , (27)  

and t h e  cor re la t ion  coeff ic ient  i s  -0.75. Also i n  t h i s  case the cor- 
r e l a t ion  is  not appreciably changed by reducing the  residuals  t o  the  
average value of S, because s' does not vary systematical ly  with-log u . 
mis corre la t ion  i s  similar t o  t h e  preceding one between and X I n  
f ac t ,  t h e  most e f f i c i e n t l y  radiat ing meteors a r e  those with smaller 
values of 0 , i.e., values near t o  those per ta in ing  t o  compact bodies. 
This cor re la t ion  must, however, a l s o  be taken with caution, f o r  sub- 
s t a n t i a l l y  the  same reasons advanced fo r  the  preceding one. 
known with a b e t t e r  accuracy than X , but i t s  physical meaning i s  
que s t  ionable f o r  fragmenting m e t  e om. 

Log u i s  

e )  
density.--As I s t a t ed  i n  the  introduction, there  a r e  no theo re t i ca l  
reasons f o r  a proport ional i ty  between the  luminous e f f ic iency  T 

atmospheric densi ty  pa . 
vat iona l  data.  I n  f ac t ,  f o r  a large minority of t he  Super-Schmidt meteors 
of t he  present sample, severa l  decelerations were determined at  heights 
t h a t  a r e  enough d i f f e ren t  t o  allow us t o  see i f  T~ depends on p, and how. 
Obviously, when dealing with meteors showing a nonnegligible degree of 
fragmentation, one must apply a correction 3X(s-so), a s  discussed in ,b)  above. 
I n  t a b l e  11 a r e  l i s t e d  values of log  -rJpm computed by individual  deceler- 

a t ions  a t  d i f f e ren t  heights f o r  each of several  randomly chosen sporadic 
meteors having x close t o  or equal t o  zero. The t ab le  a l s o  contains t h e  
data  concerning a few other meteors t h a t  experienced fragmentation i n  
varying degrees,to the  extent  of  showing i n  r e a l  cases how the correct ion 
3X(s-so) works. A s  we expected, there i s  absolutely no dependence of 
T~ on pa, and the  hypothesis advanced by Ananthakrishnan i s  completely 
meaningless. 

Independence of the luminous e f f ic iency  from the  atmospheric 

and t h e  
This can also be proved d i r e c t l y  by t h e  obser- 

P 

2 

Very recent ly  Rajchl (1963) has found that the  luminosity coef f ic ien t  
T decreases during the  meteor f l i gh t ,  being proportional t o  
Rajchl reached t h i s  conclusion by analyzing only 8 meteors and by using 
some approximated equations t o  which we may apply the  same cr i t ic i sms  as 
t o  Ceplecha's work i n  point (2 )  of the introduction. 
show t h a t  t h i s  dependence a l so  does not ex i s t .  

(1 + pav)-'. 
O P  

The present r e s u l t s  
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f )  R e s u l t s  f o r  small-camera meteors. --While shower meteors a re  
less than l / 3  o f  a l l  Super-Schmidt material, they a re  the  majority among 
small-camera meteors ; therefore  the  number of sporadic meteors avai lable  
f o r  t he  present analysis  i s  small. This i s  a l so  the  resu l t  of t he  lack 
of accuracy i n  t he  decelerations of many of them, which of ten leads t o  
weights smaller than 1. Because of t h e i r  poor r e l i a b i l i t y ,  meteors having 
w < 1 have been removed from the  f i n a l  analysis.  Therefore, only 44 
sporadic meteors are available f o r  the  analysis.  The bas ic  results are 
l i s t e d  i n  table 12. The difference i n  densi ty  between long-period meteors 
and those o f t h e  Jup i t e r  family i s  a l so  present among these meteors, as 
i s  shown i n  the tab le .  The consequent difference i n  the  average values 
of l og  ~dpf i s  estimated t o  be 0.25 ( f o r  Super-Schmidt meteors it was 0.30). 

A f t e r  t h e  correction, t he  least-squares solut ion gives 

and the  centroid of t he  d i s t r ibu t ion  i s  

log T ~ P :  = -11.69 * 0.08 f o r  log v = 6.39 0.02 . (29) 

The accuracy of t h e  determined value of n i s  very poor, but  t h i s  value 
i s  very close t o  t h a t  obtained f o r  the  Super-Schmidt meteors. For log 

2 v = 6.39 the value of log T / p  
P m  

with a difference of 0.37 f 0.12 from the  value (29) f o r  small-camera 
meteors. By dividing t h e  sporadic small-camera meteors i n t o  two groups, 
so t h a t  t he  first group contains meteors having 8, not exceeding that of 
t he  br ightes t  Super-Schmidt meteor, and reducing the  r e su l t s  t o  log v = 6.39, 

f o r  Super-Schmidt meteors i s  -11.32 f 0.04, 

we get :  

l og  = -11.16 f 0.12 ; = 0.6 f 0.1 
m 

log  T / p 2  = -11.86 f 0.11 ; 8, = 1.8 f 0.1 ~m 
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The difference between the two groups i s  quite clear.  The f a in t  meteors 

have about the same value of log ‘P/; as the Super-Schmidt (the difference m 
i s  equal t o  the probable e r ror ) ,  while the  bright meteors appear much more 
dense. The resul t  i s  

N 

(?m)bright meteors - ‘(‘rn’faint meteors 

The group of f a in t e r  small-camera mteors has an average brightness near 
t o  tha t  of the Super-Schmidt meteors of the l a s t  of the 10 groups i n  
tab le  8, which do not show any difference from the f a in t e r  Super-Schmidt 
meteors. The maximum e, f o r  the sporadic Super-Schmidt meteors i s  0.94. 
Therefore we are led t o  conclude that  the  gap i n  density i s  close t o  em = 1. 
It corresponds roughly t o  a photographic magnitude -2.7 o r  t o  a visual 
magnitude -1, which i s  ju s t  the l i m i t  of the f i reba l l s .  

g )  The value of ‘r0 --The observational data allow the determination 
P’ 

but it i s  impossible t o  separate these two parameters 
2 
m’ of the  r a t i o  Tp/p 

‘except i n  the few cases i n  which we have complete eviderce that the meteors 
a re  of as teroidal  origin. 
has been recognized t o  be certainly a s t e ro ida lby  Cook, Jacchia and McCrosky 
(1963), who found evidence tha t  i t s  composition was similar t o  tha t  of 
meteoritic stone (pm = 3.4 g 
allow values of log T p z  very close one another. 

O n l y  one of the discussed samples, meteor no. 1242, 

This meteor has 4 decelerations tha t  
The weighted average i s  d 

log .dp2 = -14.115 6 0.076 fo r  log v = 6.037 . (33) m 

The meteor does not show progressive fragmentation. 
so tha t  a reduction of a l l  the decelerations t o  the same value of s does not 
change the value of equation (33). 
very good. 
pm = 3.4 g cmm3 and n = 1.0, we get 

I t s  value of X i s  -0.10, 

The accuracy of the decelerations i s  
The average weight p i s  5.9,and w i s  about 5. By assuming 

log T = -19.09 & 0.08 . (34) OP 
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Although the  qua l i ty  of meteor no. 1242 i s  very good, it i s  
obviously unsafe t o  r e l y  on a value obtained from only one meteor. 
For tuna te ly the  recent experiences with a r t i f i c i a l  meteors have l e d  t o  
other  estimates of T 

works. 
charges from an Aerobee rocket a t  a height of 80 km. 
i n  t h e  explosive were made of aluminum. 
assumed t h a t  2 percent (0.11 g )  of t he  mass was ejected with an i n i t i a l  
speed of 14.2 kms-l . 
dependence of T on v given by *&ik f o r  br ight  meteors, he found 

L e t  us examine b r i e f l y  t h e  resul ts  of these  
OP' 

McCrosky (1961) reports  t h e  r e s u l t s  of t h e  f i r i n g  of two shaped 
The l i n e r s  inser ted  

From laboratory evidence McCrosky 

From t h e  observed l i g h t  curve, assuming the  l i n e a r  

'ov(A1) = g.10-l~ scm-I J (35) 

which seems i n  per fec t  agreement with t h e  6pik 's  e a r l i e r  value 
(8.5 X 10-loscrn-l). 
since aluminum i s  not a major consti tuent of meteors. Although t h e  correc- 
t i o n  cannot be accurately computed, McCrosky w a s  ab le  t o  work out a lower 
l i m i t  f o r  T ~ ~ .  

could be produced by t h e  oxidation of aluminum. 
i ron  and aluminum had equal e f f ic iency  per  atom an; t h a t  a l l  t h e  meteor 
rad ia t ion  i s  caused by the  iron, which, following Opik (1958), he estimated 
to be 15 percent of the  meteor material. The f i n a l  r e s u l t  was 

O f  course these two values cannot be compared d i r ec t ly ,  

He figured out t h a t  a maximum of 83 percent of t he  rad ia t ion  
Moreover, he assumed t h a t  

85 times less than G i k ' s  value and about t h ree  times l a r g e r  than  Cook's 
value estimated on the  basis of t he  motion of meteoric t r a i n s .  Since 
McCrosky used a color-index correct ion -1.8 f o r  passing from photographic 
t o  v isua l  magnitude, we can go back t o  T which i n  Jacchia ' s  un i t s  tu rns  
out t o  be OP' 

Since t h i s  value i s  considered an extreme lower l i m i t ,  McCrosky warns 
t h a t  a value 100 times l a r g e r  (-18.0) i s  not precluded by t h e  results of 
h i s  experiment. 
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More recently McCrosky and Soberman (1962) have produced an i ron 
meteor a t  a height of about 70 lan by accelerating t o  a velocity of about 
10 hs ' l  a s ta in less -s tee l  pe l l e t  (m z 2.2 g) by an air-cavi ty  charge 
attached t o  the nose of a seven-stage Trailblazer rocket. 
purpose of the experiment was t o  determine the meteor luminous efficiency. 
The resu l t  i s  

The primary 

= 8.10-~9 o Mag g cm -3 s . ( 3 8 )  ( 7op)staides  s s t e e l  

The estimated e r ror  involved i s  such t h a t  we may write, i n  logarithmic form, 

which represents a very accurate result .  Three corrections are necessary, 
however, t o  convert the value of equation (38) t o  a luminosity coefficient 
valid f o r  meteoric material. "he f i r s t  of these i s  caused by the presence 
i n  the  pe l l e t  of about 20 percent Cr. McCrosky and Soberman conclude t h a t  
the luminous efficiency of C r  should be roughly equal t o  that of iron, so 
that the value of equation (38) should also be t rue  They warn, 
however, t ha t  the probable extremes a re  -12 and -12.54. The second correc- 
t i o n  resu l t s  from the poss ib i l i ty  that  the p e l l e t  i s  not completely ablated 
a t  the  end of the detected luminosity. Fortunately, a f t e r  a detailed analysis 
of t he  ablation experienced by the pel le t ,  McCrosky and Soberman find that 
no s ignif icant  correction is  necessary f o r  terminal mass i n  t h e i r  case. 

f o r  iron. 

The last and most important correction i s  f o r  the composition of 
meteoroids. There i s  observational evidence from the spectra of low-velocity 
meteors t ha t  p rac t ica l ly  a l l  the l ight  seen on a blue emulsion i s  caused by 
i ron emission. 
of meteoric material if the i ron content i n  meteoroids were known. Although 
the composition of i ron  and stony meteorites i s  well known, no t r u l y  re l iab le  
information i s  available on the composition of cometary meteoroids, which a re  
by far the most common among meteors. McCrosky's extreme estimates are  
-20.10 and -18.80, which correspond t o  re la t ive  Fe abundances of 1 percent 
and of 20 percent, with the warning tha t  these should be lower limits 
because other elements w i l l  contribute, though l i t t l e ,  t o  the luminosity. 
It i s  not unreasonable a t  the present stage t o  assume tha t  the i ron percen- 

Therefore the luminous efficiency of i ron would give t h a t  

tage i n  cometa.y meteors i s  
15.4 percent (Opik, 1-98), 

equal t o  tha t -of  
I n  t h i s  case the  

log T = -18.91 
OP 

~ 

meteorit ic stone, i .e. ,  
r e su l t  i s  
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A detai led discussion f o r  th ree  a s t e ro ida l  meteors, one i ron  and 
two stone, has been done by Cook, Jacchia and McCrosky (1961). 
densi ty  of these meteors being known, they were able  t o  f ind t h e  value 
of T ~ ~ :  log T They removed t h e  discrepancy from 

t h e  value of equation (40) by adopting f o r  t he  three  meteors YA = 0.92 
instead of YA = 0.6. 
f o r  meteors, the  value (37a) becomes -19.23, which agrees f a i r l y  well  
with the  preceding resu l t s .  
has t o  be considered much lower than t h a t  obtained with the  Trai lblazer .  
The value of equation (40) has a l s o  been accepted by Whipple (1963) i n  
h i s  recent paper on meteoroids and penetration. 

The 

= -18.37 f o r  stone. 
O P  

If we assume t h a t  t he  radiat ion of A 1 0  i s  negl igible  

I n  any case, t he  r e l i a b i l i t y  of t h i s  value 

By putting the  value of equation (40) i n t o  equation (17a), we f ind 
the  average densi ty  of t he  Super-Schmidt sporadic meteors with Q < 7 a.u. 
The resu l t ,  

- 
= 0.25 gcm-3 Pm Y 

i s  i n  good agreement with the  value obtained theo re t i ca l ly  by Whipple 
(1955) on the bas i s  of h i s  well-known cometary model. 
t h a t  
and assume Fm = 0.3 It 0.1 g c ~ n - ~  , w e  get from equation (17a) log T~~ = -18.76 
with the  extreme values -18.51 and -19.11. 

H e  found, i n  f ac t ,  
I f  we reverse t h e  procedure must l i e  between 0.2 and 0.4 g ~ m ’ ~  . m 

Another experiment with a Trai lblazer  (McCrosky, 1963, private comunica- 
t i o n )  has confirmed the  previous resu l t ,  thus enforcing the  r e l i a b i l i t y  of 
t he  method. 
than t h a t  of Fe. 
decreased. In view of  the  uncertaint ies  s t i l l  present, t h e  author proposes 
as  a best  estimate f o r  log T t he  round value log  7 = -19.0. The masses 

OP OP 
of  meteoroids must therefore  be computed by using 

It seems t h a t  the  eff ic iency of Cr i n  producing l i g h t  i s  l a rge r  
I n  t h i s  case the  value of equation (40) should be s l i g h t l y  

-1 with v expressed i n  cms and I i n  uni t s  of zero magnitude. The e r r o r  
i n  the  mass resul t ing from the  i n t r i n s i c  e r r o r  of T 

be of the order of 2 o r  even larger .  From the  preceding discussion it 
i s  c l ea r  t h a t  it is  more l i k e l y  t h a t  equation (42) gives overestimated 
values of -E than vice versa. The e r r o r  i n  r e l a t i v e  masses, caused by 
the  uncertainty i n  the  adopted value of n, between 10 and 70 kms 
exceed 20 percent. 

P 
may be estimated t o  

OP 

-1 P 
does not 
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If we express the  luminous eff ic iency T i n  physical  u n i t s  as  
P 

the  r a t i o  between the  energy radiated i n  the  blue-emulsion spec t r a l  range 
and the  k ine t ic  energy of t he  parent meteoroid, we have 

7 = 5.25 x 10 -lo v . 
P (43) 

Therefore T 

It i s  in t e re s t ing  t o  observe that the  dependence of T 

tu rns  out t o  be 0.002 for  a veloci ty  of 40 km/s. 
P 

on the  ve loc i ty  
P 

appears t o  be l i nea r ,  as  h i k  predicted i n  h i s  e a r l i e r  work (1933) f o r  
br ight  meteors. 
meteors, and here Opik's theory f a i l s .  The present bes t  estimate of t he  
coeff ic ient  of t he  luminous efficiency -rap is  about 8 times smaller than 
6pik 's  1933 value* and only 5 times smaller than the  value he has proposed 
i n  1955. 

q e  l i n e a r  dependence is ,  however, a l s o  va l id  f o r  f a i n t e r  

On the  bas i s  of equat.ion (42) we can evaluate t h e  mass of a zero 
v i sua l  magnitude meteoroid a t  a given velocity.  
i n t o  photographic magnitude by means of equation (41, we may use the  
following formula, empirically derived by Jacchia (1958) from photographic 
meteors with smooth l i g h t  curves: 

After  converting visual 

(44 1 

where I i s  the photographic in tens i ty  a t  max-.num l i g h t ;  and Z i s  the zeni th  

angle of the meteor path. 
mass outside the  atmosphere m,, a r e  re lated [see equation (lo)] by 

P* R 
The integrated brightness Em and the  meteor 

h=G . (45 1 

A t  v = 40 kms-land cos Z 

Schmidt meteors) m, i s  0.84 grams. 

= 0.6 (mean value of cos Z R R f o r  the Super- 

*Harvard meteoric masses are ,  however, only 6.5 times smaller than the  
values computed on the  bas i s  of eq. (42). See footnote, page 9. 
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h )  The ionizing efficiency.--It  appears t h a t  a t  present t he  uncer- 
t a i n t y  concerning the  ionizing eff ic iency (3 of meteors i s  an order of 
magnitude l a rge r  than the  uncertainty a f fec t ing  the  luminous e f f ic iency  
T It therefore seems reasonable t o  deduce the  ionizing eff ic iency 
from t h e  present resul ts  on T and from experimental data. A s  a result 
of t h e i r  program of combined radio and photographic observations of 
meteors, Davis and H a l l  (1963) were able  t o  determine the r a t i o  I /q for  P 
7 meteors, q being t h e  e lec t ronic  l i n e  densi ty  of t he  meteor t r a i l .  

P' 
P 

Their 
r e su l t  was log  Ip/q = -3.96 f 0.14 a t  v = 32.2 kms-I. 

equation (1): 
The ionizing eff ic iency is  defined by an equation analogous t o  

I being the power going i n t o  the  production of electrons.  The e lec t ronic  

l i n e  density is  given by 
Q 

fJ being t h e  probabi l i ty  of ionizat ion of an ablated meteor atom of mass p 
The terms @ and T are  re lated by 

9 

where P i s  the mean ionizat ion poten t ia l ;  T - 7 ev (Cook and M i l l m a n ,  1955). 

From equations ( 2 )  and (46), we have 
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The average mass p of a meteor atom i s  3.8 X g (6pik, 1958). 
Therefore, a t  v = 32.2 k m s - I ,  we obtain 

-4 T = 5.6 x 10 . 
9 

B = 0.010; 

The e r ro r s  i n  T 

q 

and I /q cause an uncertainty i n  fl of a f a c t o r  of 
and fl deduced by Davis and Hal l  were based on 8pik's 

P P 
3. "he values of T 

l a t e  evalaaticr, of t he  luminous eff ic iency and are consequently about 
th ree  times la rger .  

A preliminary r e su l t  of a study i n  progress on the  dependence on 
ve loc i ty  of t he  ionizing eff ic iency suggests B - 4 . 
have, i n  cgs, 

Accordingly, we 

fl = 9.5 10-29 v4 . 
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Table 1 

Sporadic Super-Schmidt meteors : a )  Results of the general least  -squares 

solution and mean values of the basic quantit ies;  b)  log 7 / @  as a 

function of meteor velocity. 
i n  density between short-period and -long-period meteors. ) 

2 
P m  

(No correction applied for the difference 

2 a )  n = 1.52 0.15; log  7 /Pm = -20.99 f 0.99; a.d = 0.53; no. of meteors = 247 OP - 
log v = 6.433 f 0.008; log T /P2 = -11.182 f 0.031; Gco = -0.40 f 0.02; w - - 4.35, 

P m  
2 

P m  
where €m = log E,and a.d = average deviation of individual value of log T / P  

from the least-squares solution. 

- - b) 
Velocity, v - log v log Tp/PE S.d. of mean Em S.d. of mean no. w 
(lo5 cm-l) 

10-15 
15 -20 
20-25 

25 -30 
30-35 
35 -40 

45 -50 
50-55 
55 -60 
60-65 
65 -70 
70-75 

40-45 

6.130 

6.347 
6.436 
6.505 
6.572 
6.633 
6.678 
6.720 
6.760 
6.791 
6.829 

6.245 

6.854 

-11.898 
-11 377 
-11.397 
-11.227 
-10.996 
-10.753 

-io. 806 
-10.544 

-io. 887 
-10.934 
-10.534 

-10.730 

-10.465 

* 0.311 
0 -095 
0.105 
0.104 
0.101 

0.217 
0.160 
0.150 

0.230 

0.139 
0.198 
0.164 
0.454 

-0 73 
-0.42 
-0.51 
-0 -47 
-0.20 
-0.46 
-0.46 
-0.07 
-0.27 
-0.17 

-0.26 
a.06 

-0.41 

0.13 
0.07 
0.06 
0.07 
0.09 
0.13 
0.08 
0.18 
0.16 
0.16 
0.09 

0.07 
0.21 

10 

52 
45 
40 
24 
10 
12 
8 
6 
10 

13 
12 

5 

4.82 
4.96 
4.74 
4.37 
5 -09 
3.69 
3 -73 
4.67 
3-17 
3.34 
2.82 
2.70 
3.23 

The least-squares solution for  mean values gives 
Correlation coefficient between mean values of log  v and log  T /p2 = 0.90. 

n = 1.51 f 0.15. 

P m  
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Table 2a 

Sporadic Super-Schmidt meteors divided i n  two groups, short -period 
(Q < 7 a.u.)  and long-period meteors (Q > 7 a .u . ) .  Wan values of 
basic quantit ies f o r  both groups : 

a l )  Q < 7 a-u. :  no. = 155; log v E 6.338 f 0.007; 

- 
log  7 /p2 = -11.368 f 0.039; ern = -0.49 + 0.02 

P m  

Q > 7 a.u.: no. = 92; log v = 6.621 f 0.013; 

log  7 /p2 = -10.803 f 0.041; ern = -0.22 f 0.03 
- 

P m  

By reducing the values Of log 

approximations, w e  obtain 

/P2 t o  equal velocity v f  by successive P m  

82) The overlapping velocity region is 20-45 km/s. For meteors having 
ve loc i t ies  between these two l i m i t s  w e  have: 

Q < 7 a.u.: no. = 94; log v = 6.417; log T /P2  = -11.295 f 0.047; 6, =-0.50 + 0.02 
P m  

- 
Q > 7 a.u.: no. = 37; log v = 6.499; log 7 /P2  = -10.878 f 0.062; ern=-0.26 f- 0.05 

P m  

Then : 
h 

From the  resu l t s  l i s t e d  i n  a l )  and a2), I have assumed: 

V = V '  V Y '  

a3) For low-fragmentation meteors ( /XI< 0.2), i n  the overlapping velocity 

Q < 7 a.u.: no. = 33; log v = 6.462; log T / p 2  = -11.167 f 0.082 

range : 

P m  

Q < 7 a . u . :  no. = 18; log v = 6.512; log / p 2  = -10.866 f 0.086. 
P m  

v=v' v = v' 
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Table 2b 

Sporadic Super-Schmidt meteors divided i n  t w o  groups, snort -period 
2 (Q < 7 a.u.) and long-period (Q < 7 a.u. ) :  log T / p  P m  as a 

Arnction of meteor veloci ty  for  each group. 

J 

Velocity, v 
(105 - -l) 
15 - m 

10 - 15 

20 - 25 

25 - 30 

30 - 35 

35 - 40 

40 - 45 

45 - 50 

50 - 55 

55 - 60 

60 - 65 

65 - 70 

70 - 75 

no. 

9 

51 

40 

32 

15 

4 

3 

1 

6.124 

6.245 

6.346 

6 0433 

6.508 

6 569 

6.621 

Q < 7  

log 7 /P2 
P m  

-E -065 

-11.384 

-11.418 

-11.324 

-11.081 

-11.090 

-io. 616 

S.d.of mean 

i 0.301 

0 097 

0.113 

0.124 

0.119 

0.387 

0.161 

Q '7 

no. a P m  s.d.of mean 

1 

1 

5 

8 

9 

6 

9 

7 

6 

10 

13 

12 

5 

6.353 

6.447 

6 -499 

6.573 

6.637 

6.680 

6.720 

6.760 

6 791 

6.829 

6.854 

-11.262 

-io. 896 

-10.857 

-10.576 

-10 769 

-io. 810 

-10.544 

-10 465 

-10.887 

-10.934 

-10.534 

f 0.290 

0.127 

0.181 

0 253 

0.210 

0.171 

0.230 

0 - 139 

0.198 

0.164 

0.454 
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Table 3 

Sporadic Super-Schmidt meteors: a )  r e s u l t s  of the general  least-squares 

solution and mean values of the basic  quant i t ies ;  b )  log 7 /P2 
function of meteor velocity:  mean values of log 7 /P 
di f fe ren t  v. (All values of log T /P 
period meteors. ) 

a s  a 
2 P m  f o r  6 groups of 

P m  
reduced t o  the densi ty  of shor t -  2 

P m  

2 a )  n = 1.01 f 0.15; l o g  T /Pm = -17.80 f 0.98; a d .  = 0.53; no. of meteors = 247 
OP 

log v = 6.433 f 0.008; log 7 /P2 = -11.281 f 0.030; Tm = -0.40 0.02; = 4.35; P m  
2 

P m  
a.d. = average deviation of ( the)  individual  value of log T /P 

squares straight l i n e .  

from t h e  least- 

b) 
- - Velocity v 

log 7 /P2 S.d.of mean Qc0 S.d.of mean no. w (105 cms-l) P m  

10 - 20 6.227 -11.469 f 0.095 -0.47 f 0.06 62 

20 - 30 6.387 -11.373 0 073 -0.49 0.04 85 

30 - 40 6.520 -11.073 0.089 -0.26 0.08 34 

40 - 50 6.653 -11.009 0.115 -0.28 0.10 20 

50 - 60 6.745 -10.794 0.118 -0.21 0.12 16 

60 - 73 6.818 -11.138 0.130 -0.26 0.07 30 

4.94 

4.57 

4.68 

4.10 

3.28 

2.84 

The least-squares solut ion f o r  mean values affords:  n = 0.93 f 0.17. 

Correlation coeff ic ient  between mean values of log v and log 
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Table k 

2 
P m  

Sporadic Super-Schmidt meteors: log  7 / P  

(All values reduced t o  the density of shor t  -period meteors. ) 
as a funct ion of meteor ve loc i ty .  

Velocity, v - - - 
l o g  v log 7 /P2 S.d.of mean €- S.d.of mean no. w 

( 105 cllls P m  

io - 1 5  
15  - 20 

20 - 25 

25 - 30 
30 - 35 
35 - 40 
40 - 45 

45 - 50 

50 - 55 
55 - 60 
60 - 65 

65 - 70 
70 - 75 

6.130 

6.347 

6 505 
6 572 
6.633 
6.678 
6.720 
6.760 

6 791 
6.829 

6.245 

6.436 

6.854 

-11.931 f 0;296 
-11.383 0 9 095 
-11.438 0.105 

-11 295 0.101 

-11.110 0.098 

-10 -954 0.169 
-11.076 0.155 
-10.844 0.230 
-10.765 0 9 139 
-11.187 0.198 

-10.949 0.204 

-11.234 0.164 
-10.834 0.454 

-0 73 
-0.42 
-0.51 

-0.47 
-0.20 

-0.46 
-0.46 
-0.07 
-0.27 
-0.17 

-0.26 
w.06 

-0.41 

i 0.13 
0.07 
0.06 

0.07 
0.09 
0.13 
0.08 
0.18 
0.16 
0.16 
0.09 
0.07 
0.21 

10 4.82 
52 4.96 
45 4.74 

40 4.37 
24 5 -09 
10 3.69 
12 3 *73 
8 4.67 

6 3 017 
10 3 -34 
13 2.82 
12 2.70 

5 3 -23 

The least-squares so lu t ion  f o r  mean values affords:  n = 1.00 i 0.15. 

Correlat ion coef f ic ien t  between mean values of log v and log 7 /P2 = 0.81*. 
P a  

* 
The decrease of the correlat ion coef f ic ien t  w i t h  respect  t o  the uncor- 

rec ted  data o f t a b l e  1 i s  caused by t he  decrease of the  value of n . Such a 
decrease does not mean a worse correlation. 
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Table 5 

Super-Schmidt shaver-meteors: basic values and relative density of each shaver. 

Shower no. 

Geminids a0 

Southern Taurids 18 

O! - Capricornids 13 

6 -Aquarids 10 

Quadrantids 9 

Perseids 9 

Orionids 8 

Southern t -Aquarids 6 

Northern Taurids 5 

K - Cygnids 4 

Lyrids 3 

0 - Hydrids 3 

Dmconids* 2 

Virginids 2 

log v f Sad. 

6.556 f 0.001 

6.455 f0 .006  

6.400 10.009 

6.624 f 0.003 

6.630 10.002 

6.778 f 0.001 

6.831 f0.003 

6.524 f 0.014 

6.484 f 0 . 0 0 7  

6.358 f0 .008  

6.688 f 0.010 

6.771 10.004 

6.235 f 0.001 

6.461 f0.051 

2 
1 9  Tp/Pm f S.d. 

-12.357 f 0.161 

-11.137 f 0.079 

-10.733 0.167 

-11.106 f 0.176 

-10.700 f0 .184  

-11.099 f0.125 

-10.428 + o . a 7  

-11.296 f0 .133  

-11.201 f0 .184  

-10.909 f 0.170 

-11.201 f0 .281  

-11.181 f0 .328  

- 6.001 f0 .327  

-12.310 f 0 . 2 2 0  

- 
t S.d. 

-0.06 f 0 . 1 4  

-0.42 f0.10 

-0.55 f0.13 

-0.59 f0.11 

4 . 6 2  f 0 . 0 9  

0.31 f 0 . 2 1  

4.09 f O . 1 0  

-0.75 10 .12  

0.08 f 0.20 

-0.65 10.05 

-0.12 4z0.12 

-0.28 f0.08 

-0.28 f 0.03 

-0.20 f 0 . W  

A f S.d. 
P 

-1.20 t 0 . 2 3  

0.12 f 0 . 1 2  

0.58 f 0 . 2 2  

4 . 0 2  f 0 . 2 6  

0.38 f 0 . 2 7  

-0.17 f 0 . 2 4  

0.45 f 0 . 3 5  

4.11 f0.19 

0.03 f O . 2 3  

0.45 f 0.23 

-0.18 f 0 . 3 8  

-0.24 f 0 . 4 3  

5.48 f 0 . 4  

-1.06 f 0 . 2 7  

Ap = (log Tp/Pm)hower 2 - (log Tp'p~)spomdic, 2 Q< 7 = 2 l o g -  pSP . 
psh 

shower v = v  

= density of the meteordds of the shower p sh 

p sp = density of the spomdic meteoroids with Q < 7 . 
Q = average cnphqlion distance in (Y.u.: from Jacchla (1963) a d  Whipple and Jaochia (1961) . 

- -  
Psh/Psp * S. d. 

4.0 f l  

0.9 f O . l  

0.5 10.1 

1.0 f 0 . 3  

0.65 f 0 . 2  

1.1 f 0 . 3  

1.0 f 0 . 3  

0.6 f 0 . 2  

1 . 2  fO.7 
0.5 

1.3 3~::: 

- 
Q 

2.6 

3;s 

5.3 

5.5 

5.2 

45 

30 

4.2 

4.2 

5 

55 

60 

5.6 

5 

" 

*Note: The fmgmentation index x for these 2 meteors is very large (respectively 1.32 and 2.46),so that thevalues of 

log ?dpm and of psh/pSp are pmctically meaningless. 2 

-52- 



Tab le  6 

Sporadic Super-Schmidt meteors w i t h  fragmentation index IX l<  0.2: 

r e su l t s ;  b )  log  T / P  as a function of  meteor velocity. (All values of 

log 7 /P 

a )  basic 
2 

P m  2 
P m  

reduced t o  the density of short -period meteors. ) 

a )  n = 1.24 * 0.22; log Top/Pf = -19.18 f 1.41; a.d = 0.51; no. of meteors = 125; 

- - b) - 
Velocity, v log v log /p2 S.d.of mean S.d.of mean no. w 

P m  
(105 

10 - 20 6.220 -11.360 f 0.130 -0.37 0.09 30 5.66 

XI - 30 6.394 -11.318 0.094 -0 -46 0.06 49 4.69 

30 - 40 6.522 -11.001 0.131 -0.22 0.10 20 4.77 

40 - 50 6.665 -11.229 0.148 -0.02 0.16 8 4.95 

50 - 60 6.740 -10.742 0.182 -0.04 0.15 7 3.67 

60 - 73 6.819 -10.680 0.230 -0.17 0.12 11 2.87 

. 
, 
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no. 

=aD 

log v 

- 

Sporadic Super-Schmidt meteors: mean values of bas ic  da ta  
f o r  three groups, equal ly  populated, of d i f f e ren t  brightness,  

Painte s t  

83 

-0.86 f 0.01 

6.355 f 0.012 

log I- /P2 
P m  

-11.341 f 0.056 

- 
x 

log (5 

- 
S 

0.24 f 0.05 

-11.15 A 0.04 

-0.06 f 0.02 

Intermediate 

82 

-0.51 f 0.01 

6.452 f 0.013 

-11.362 f 0.050 

-11.41 f 0.06 

0.29 f 0.04 

-11.17 i 0.04 

-0.13 * 0.03 
-11.40 f 0.13 

Brightest  meteors 

82 

0.07 f 0.02 

6.482 f 0.015 

-11.165 * 0.047 
-11.25 f 0.06 

0.13 f 0.03 

-11.24 f 0.03 

-0.25 f 0.04 

-11.31 * 0.11 

I 

c 

x = 0.22 
l og  0 =-11.19 
s = -0.15 

* 2 The reduction of the log I- /P 
P m  

done by means of  the correlat ions discussed i n  sec t ions  3b and 3d. 

t o  standard values of X, log 0, and s i s  

. 
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Table 8 

Sporadic Super-Schmidt rneteors: residuals A as a function of integrated brightness . 

-0 -329 

-0.169 

+o .01g 

4-0.454 

A = (1 

- 
S.d.of mean 

-1 049 * 0.025 

-0. a54 0.007 

-0 756 0.005 

-0.664 0.004 

-0.568 0.007 

-0.447 0.005 

0.008 

0.008 

0.013 

0.045 

- 
A 

0.046 

-0.051 

0.070 

0.022 

-0.302 

0.009 

-0.153 

0 093 

0.111 

0 093 

S.d.of mean 

f 0.147 

0.130 

0.146 

0.137 

0.126 

0.118 

0.156 

0.114 

0.124 

0.121 

least-squares. 

no. 

25 

25 

25 

25 

25 

25 

25 

25 

25 

22 

-56- 



c 
rl 

Table 9 

Sporadic Super-Schmidt meteors: res idua ls  A as  a function 
of the fragmentation index X . 

- 
x 

-0.122 

-0.018 

0.036 

0.096 

0.149 

0.222 

0 -309 

0.383 

0 532 

0 909 

S.d.of mean 

f 0.014 

0.003 

0.004 

0.004 

0.003 

0.005 

0.005 

0.005 

0.015 

o .052 

a 

0.082 

0.281 

0.016 

0.153 

-0.197 

0.116 

-0.111 

0.091 

-0.232 

-0.368 

S.d.of mean 

* 0.132 
0.082 

0.120 

0.132 

0.146 

0.140 

0.164 

0.112 

0.118 

0.124 

no. 

25 

25 

25 

25 

25 

25 

25 

25 

25 

22 

Correlation coef f ic ien t  between mean values of A and X = -0.73. 
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Table 10 

Sporadic Super-Schmidt meteors: res idua ls  A as a function of log (5. 

- 
log 

-10 785 

-10 -937 

-11 040 

-11. ogg 

-11.150 

-11 204 

-11.251 

-11 304 

-11.406 

-11.633 

S.d.of mean 

f 0.016 

0.007 

0.005 

0.003 

0.003 

0.003 

0.002 

0.004 

0.007 

0.032 

- 
A 

-0.317 

-0.207 

0.035 

-0.184 

-0.094 

-0.051 

0.200 

0.141 

0.287 

0.078 

S.d.of mean 

f 0.155 

0.146 

0.145 

0.146 

0.128 

0.138 

0.125 

0.108 

0.105 

0.086 

no. 

24 

25 

25 

25 

25 

25 

25 

25 

25 

22 

Correlation coeff ic ient  between mean values of A and log  Q = -0.75. 

c 

-58- 
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Table 11 

2 
P m  

values of lo& 7 / P  

heights  f o r  each of several sporadic Super-Schmidt meteors. 

computed by s ingle  decelerations a t  d i f f e r e n t  

, 

2 
P m  Trail no. Height (km) log Pa(gcm-3) s Pla te  log 7 / P  P 

9030 90.01 -8.50 -0.22 ST -11.42 7.7 
89.64 -8.47 -0.18 SL -11.31 7.7 

v = 23.7 kms-l 87.78 -8 33 0.04 SL -11.28 6.9 
86.86 -8.25 0.38 ST -11.43 6.1 

x = 0.00 82.24 -7.88 0.80 SL -11.38 3 - 5  
82.23 -7.88 0.80 ST -11.27 3 - 4  

5572 87.35 -8.29 -0.56 ST -11.10 8.5 
87.22 -8.28 -0.54 ss -11.16 7.8 

v = 16.4 w-1 82.86 -7.93 0.07 ss -11.21 5 -6 
82.75 -7 92 0.08 ST -11.34 5 *3  

x =o.oo 79 -88 -7 69 0.71 ST -11.02 3.5 
79 80 -7 69 0.75 SS -11.21 3 -4  

12361 93 013 
92 53 

v = 22.1 91.43 
91.12 

x = 0.01 90.40 
90.22 
88.08 
87 9 85 

-8.76 
-9.71 
-8.61 
-8 59 
-8 53 
-8.52 
-8.35 
-8 33 

-0.54 SK 
-0.42 SL 
-0.19 SK 
-0.13 SL 
0.03 SK 
0.07 SI, 
0.90 SL 
1.07 SK 

-10 93 
-10.80 
-10.80 
-10.80 
-io. 91 
-10.87 
-10.99 
-10.80 

11973 98 83 -9.22 -0.53 ST -11.02 8.6 
98 30 -9.18 -0.47 SL -11.20 8.4 

v = 44.7 kms-l 97.38 -9.11 -0.38 ST -10.95 8.4 
96.84 -9 -07 -0.32 SL -11.12 8.1 

x = -0.01 91.04 -8.58 0.53 SL -11.20 3 *6  
90.80 -8.56 0.57 ST -10.98 3 07 

5532 87 03 -8.26 -0.39 ST -11.85 8.0 
86.68 -8.23 -0.35 SL -11.70 7.9 

v = 22.5 85 007 -8.10 -0.15 ST -11.76 7.5 
84.87 -8 .og -0.12 SL -11.68 7.4 

x = 0.01 80.46 -7 74 0.67 SL -11.76 3 - 7  

7161 105.78 
105.25 

v = 48.8 l ~ n s - ~  102.74 
102.31 

x = -0.01 101.57 
100.90 
96.64 
94 79 

-9 73 
-9 969 
-9 9 5 1  
-9 -47 
-9 e 4 2  
-9 937 
-9.04 
-8.90 

-0.85 SL 
-0.79 ST 
-0.51 ST 
-0.46 SL 
-0.38 ST 
-0.31 SL 
0.17 ST 
0.44 SL 

-10.80 
-10.74 
-io. 71 

-io. 50 
-10.63 

-10.74 

-10.68 

-10.84 

9.0 
9.1 
8.7 
8.6 
7.9 
8.2 
6.2 
5 

-59- 



T r a i l  no. 

5195 
v = 28.4 --ns-l 

x = 0.02 

8640 

v = 55.4 kms-l 

x = 0.02 

7216 

v = 31.4 

x = 0.06 

4464 
-1 v = 20.7 hs 

x = 0.07 

7946 
v = 17.8 

x = 0.08 

Height ( km) 

96 52 
95.97 
88-73 
88.63 

106.14 

101.44 
105.65 

101.05 

98.88 
99 * 23 

98.13 
97-02 
94 70 
93 -93 
91.35 
90.31 
86.47 
85.31 

93 -43 
85 -45 
80.72 
79.04 
77.39 
75 -48 
74 76 

77.49 
76.44 
65.78 
65.69 
59.40 
58 9 94 
55.56 
55 -21 
51.51 
51.05 

94.08 

84 2.4 

Table 11 (continued) 

-9.02 
-8 * 99 

-8.39 

-9.75 
-9 72 
-9.41 
-9.38 
-9.24 
-9.22 

-9.18 

-8.89 
-8.83 

-8 - 53 
-8.22 
-8.13 

-8.83 
-8.78 

-8.40 

-9 07 

-8.61 

-8.14 
-8.04 
-7.76 
-7.64 
-7.52 
-7.40 
-7.35 

-7.53 
-7.46 
-6.72 
-6.72 

-6.28 
-6.26 
-6.07 

-6.48 
-6.46 

-6 -04 

-0.42 
-0.34 
0.68 
0.69 

-0.33 
-0.28 
0.31 
0.35 
0.80 
0.88 

-0.80 

-0.17 
0.05 
0.68 
0.93 
-1.42 
-1.34 

-0.40 

-0.94 

-0.54 
-0.45 

-0.51 

-0.03 
0.16 
0.39 
0.99 
1.42 

-1.05 
-0.94 
-0.22 
-0.21 
0.20 
0.22 
0.49 
0.52 
1.13 
1.28 

-60 - 

Plate 

SL 
ST 
SL 
ST 

S K  
SL 
SK 
SL 
SK 
SL 

ST 
SL 
ST 
SL 
SL 
ST 
ST 
SL 

ST 
ss 
ST 
ss 
ST 
ss 
ST 
ss 
ST 

SL 
S K  
SL 
S K  
S K  
SL 
S K  
SL 
S K  
SL 

log 7 /P2 
~m 

-10.64 
-io. 70 
-10.64 
-10.53 

-10.13 
-10.33 
-io. 17 
-10.29 
-10.18 
-10.06 

-11.11 
-10.95 
-10.86 

-10.74 
-10.75 
-10.77 

-10.80 

-10.69 

-11.28 
-11.04 
-10.88 
-11.02 
-11.20 
-10.94 
-io. 70 
-10.55 
-10.51 

-13.87 

-14.07 

-13.80 
-13.72 
-13 .12 
-13.01 

-14.00 

-14.20 
-14.21 

-14.01 

P 

7.0 
7.2 
2.2 
2.0 

8.2 
7.8 
5.1 
4.4 
3 -3 
2.8 

9.4 -10.94 
9.3 -10.81 
8.8 -10.76 
8.6 -10.72 
7.7 -10.71 

4.0 -10.89 
3.1 -10.86 

7.2 -10.74 

8.1 -10.98 
8.8 -10.76 
8.4 -10.78 

6.5 -11.20 
8.3 -10.94 

6.1 -10.97 
4.6 -10.78 
2.7 -10.76 
1.4 -10.81 

9.4 -13.75 
4.9 -13.64 
7.9 -14.15 
7.8 -14.16 
6.2 -14.12 
6.1 -14.06 
4.7 -13.92 

2.4 -13.39 
2.1 -13.32 

4.8 -13.84 

c 
b 

‘L 
1 

. 



1 
Table 11 continued) 

Trail no. Height (km) log Pa(gcm-3) 

6949 

v = 26.7 kms-l 

x =0.12 

12577 
v = 29.2 kms-l 

x = 0.20 

e 
4702 

v = 31.5 kms-l 
x = 0.97 

10414 
-1 v = 15.6 kms 

x = -0.10 

91.68 
91.10 
88.63 
88.40 
84.00 
83.50 
79 -92 
79 76 

94.62 
94.47 
91.92 
91.63 
89.70 
89.54 
85.58 

93.67 
89.53 
89.12 

85.42 

85.44 

88.46 
86.62 
77.04 
76.47 
69.39 
69.26 
63.80 
63.58 

-8.64 
-8.59 
-8 - 39 
-8.37 
-8.02 
-7.98 
-7.69 
-7.68 

-8.87 

-8.64 
-8.48 
-8.47 

-8.88 

-8.66 

-8.15 
-8.13 

-8-81 
-8.46 

-8.14 
-8.43 

-8.38 
-8.23 
-7.50 
-7.46 
-7.03 
-7.02 
-6.72 
-6.71 

s 

-0.87 
-0 -81 
-0.59 
-0.57 
-0.04 
0.03 
0.59 
0.62 

-0.60 
-0 59 
-0.34 
-0.32 
-0.11 
-0.08 
0.53 
0.56 

-0- 75 
-0.11 
-0.07 
0.51 

-1.64 
-1.33 
-0.32 
-0.27 
0.39 
0.41 
1.19 
1.25 

Plate  

SL 
ST 
SL 
ST 
SL 
ST 
SL 
ST 

SL 
SK 
SL 
SK 
SK 
SL 
SK 
SL 

ss 
ss 
KB 
ss 

SL 
SK 
SL 
S K  
SL 
SK 
SL 
SK 

2 
1065 Tp/Pm 

-12.26 
-12.43 
-12.12 
-12.19 
-12.04 
-12.15 
-11.83 
-11.67 

-11.40 
-11.42 

-11.22 

-11.14 
-10.81 

-11.17 

-11.07 

-io.  56 

-13.03 
-11.04 
-10.58 
- 9-39 
-11.18 
-11.25 
-11.52 
-11.52 
-11.87 
-11.90 
-11.90 
-11.90 

9.3 
9.2 
8.9 
8.9 
7.1 
6.6 
4.2 
4.0 

8.4 
8.3 
8.3 
8.2 
7.3 
6.8 
4.3 
4.1 

2.1 
5.5 
4.8 
1.3 

9.7 
7.9 
8.1 
7.8 
5 *4 
5 -1 
2.5 
2.3 

-11.95 
-12.14 
-11.91 
-11.98 
-12.03 
-12.16 
-12.04 
-11.89 

-11.04 
-11.06 
-10.97 
-11.03 
-11.01 
-11.09 
-11.13 
-10.90 

-io. 72 
-10.38 

-11.67 
-11.65 
-11.62 
-11.60 
-11.75 
-11.78 
-11.54 
-11.53 

-10.85 

-10.87 

-61 - 



Table 12 

2 
P m  Sporadic small-camera meteors: a )  Basic r e s u l t s ;  b )  log 

of meteor velocity.  
/P as  a function 

- - 
W 

2 
P m  

no. l og  v p.e. log T /p p.e. eo, f p.e. a )  

A 1  1 together 44 6.389 f 0.019 -11.630 f 0.084 1.43 0.08 3.66 

I -62- 

k t e o r s  w i t h  Q < 7 30 6.324 f 0.017 -11.779 f 0.096 1.47 f 0.09 4.03 

k t e o r s  w i t h  Q > 7 1.3 6.584 + 0.034 -11.264 * 0.140 1.32 f 0.16 2.88 

e t e o r s  w i t h  c m > l  26 6.378 f 0.028 -11.868 f 0.101 1.82 f 0.08 4.18 

k t e o r s  w i t h  e m < l  18 6.413 f 0.022 -11.132 f 0.115 0.63 f 0.07 2.90 

Least-squares solution f o r  a l l  meteors: n = 1.15 f 0.5 (no correct ion applied 
f o r  the  difference of densi ty  between short-period and long-period meteors). 

k a s t - s q u a r e s  solution f o r  a l l  meteors, after reduction of a l l  da$a t o  the 
dens i ty  of short-period meteors: n = 0.90 0.5. 

Velocity, v - - 
no. log v log T ~ / P :  s.d.of mean ( l o g  T ~ / P ~ ) ~ ~ ~ ~ .  em * S . d .  w 

(105 

10 - 20 11 6.191 -12.105 0.226 -12.105 1.2 0.2 4.45 

20 - 27 15 6.354 -11.310 0.204 -11.359 1.6 f 0.2 3.61 

27 - 40 i o  6.506 -11.652 0.206 -11.708 1.5 f 0.3 3.67 

40 - 70 8 6.734 -11.305 0.341 -11.540 1.4 * 0.2 2.64 

2 
/P P m  

are  the mean values of log after reduction of a l l  data t o  

the densi ty  of short-period meteors. 


